精英家教网 > 高中数学 > 题目详情
12.已知$f(x)=\left\{\begin{array}{l}f({x-5}),x≥0\\{log_3}({-x}),x<0\end{array}\right.$,则f(2017)等于1.

分析 由分段函数式,可得x≥0时,f(x+5k)=f(x),k为正整数,f(2017)转化为f(2)=f(-3),再代入第二段解析式,由对数的运算可得.

解答 解:由$f(x)=\left\{\begin{array}{l}f({x-5}),x≥0\\{log_3}({-x}),x<0\end{array}\right.$,
可得x≥0时,f(x+5)=f(x+5-5)=f(x),
即有f(x+5k)=f(x),k为正整数,
则f(2017)=f(403×5+2)=f(2)=f(-3)=log33=1.
故答案为:1.

点评 本题考查分段函数的函数值的求法,注意运用函数各段对应解析式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金超过130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是2019年.(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知5x=3,$y={log_5}\frac{9}{25}$,则2x-y的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线的顶点在原点,对称轴为x轴,抛物线上一点P(3,a)到焦点的距离为5.
(1)求抛物线的标准方程;
(2)已知直线l过定点P(-3,1),斜率为k,当k为何值时,直线l与抛物线只有一个公共点,并写出相应直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的n位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如右图所示.
(1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;
(2)若按分层抽样的方法从年龄在[20,30)以内及[40,50)以内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽的3人中,年龄在[40,50)以内的人数为X,求X的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在区间[-2,4]上随机地取一个数x,若x满足x≤m的概率为$\frac{2}{3}$,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3-$\frac{9}{2}$x2+6x-a.
(1)求函数f(x)的单调区间.
(2)若f(x)的图象与x轴有三个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数y=f(x)在x=x0处可导,且$\underset{lim}{△x→0}$$\frac{f({x}_{0}-3△x)-f({x}_{0})}{2△x}$=1,则f′(x0)等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数$f(x)=\frac{1}{{\sqrt{a-x}}}$和g(x)=ln(-x2+4x-3)的定义域分别为集合A和B.
(1)当a=2,求函数y=f(x)+g(x)的定义域;
(2)若A∩(∁RB)=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案