精英家教网 > 高中数学 > 题目详情
已知抛物线 y2=4x
(1)倾斜角为
π
4
的直线l经过抛物线的焦点,且与抛物线相交于A、B两点,求线段AB的长.
(2)在抛物线上求一点P,使得点P到直线 l:x-y+4=0的距离最短,并求最短距离.
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:(1)联立直线方程和抛物线方程,化为关于x的一元二次方程,由根与系数关系结合抛物线过焦点的弦长公式得答案;
(2)求出与x-y+4=0平行且与抛物线相切的直线方程,得到切点坐标,由两平行线间的距离求得答案.
解答: 解:(1)由y2=4x,得其焦点坐标为F(1,0),
又直线的倾斜角为
π
4
,则其斜率k=1,
∴A、B所在直线方程为y=x-1.
联立
y=x-1
y2=4x
,得x2-6x+1=0.
设A(x1,y1),B(x2,y2),
则x1+x2=6.
∴|AB|=x1+x2+p=6+2=8;
(2)如图,

设与直线 l:x-y+4=0平行且与抛物线相切的直线方程为x-y+m=0,
联立
x-y+m=0
y2=4x
,得x2+(2m-4)x+m2=0.
由△=(2m-4)2-4m2=0,解得:m=1.
∴方程x2+(2m-4)x+m2=0化为x2-2x+1=0,解得x=1,则y=1+m=2.
∴P(1,2),
此时点P到直线 l:x-y+4=0的最短距离为d=
|4-1|
2
=
3
2
2
点评:本题考查了抛物线的简单几何性质,考查了直线与圆锥曲线的关系,训练了弦长公式的应用,体现了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在(0,+∞)上单调性的情况,并用单调性定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=
1
x
,x>
1
2
},B={y=2x,x<0},则A∩B=(  )
A、{y=|1<y<2}
B、{y|0<y<
1
2
}
C、{y|0<y<1}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

在送医下乡活动中,某医院安排甲、乙、丙、丁、戊五名医生到3所乡医院工作,每所医院至少安排一名医生,且甲、乙两名医生不安排在同一医院,丙、丁两名医生也不安排在同一医院,则不同的分配方法总数为(  )
A、36B、72C、84D、108

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)(x∈R)满足f(x+2)=2f(x)+x,且当0≤x<2时,f(x)=[x]([x]表示不超过x的最大整数),则f(5.5)=(  )
A、8.5B、10.5
C、12.5D、14.5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且f(x)在(0,+∞)上有一个零点,那么f(x)的零点个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB=9,AC=15,∠BAC=120°,平面ABC外一点P到三个顶点A、B、C的距离均为14,则P到平面ABC的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin2x的图象中相邻两条对称轴的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a≤b,则ac2≤bc2,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是
 

查看答案和解析>>

同步练习册答案