精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,则f(1+log23)的值为(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{3}$

分析 由2<1+log23<3,利用分段函数的性质得f(1+log23)=f(2+log23)=($\frac{1}{2}$)${\;}^{2+lo{g}_{2}3}$,由此利用指数、对数的性质、运算法则和换底公式求解.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,
∴f(1+log23)=f(2+log23)=($\frac{1}{2}$)${\;}^{2+lo{g}_{2}3}$
=($\frac{1}{2}$)2×$(\frac{1}{2})^{lo{g}_{2}3}$
=$\frac{1}{4}×\frac{1}{3}$
=$\frac{1}{12}$.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质、指数、对数的性质、运算法则和换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知△ABC三个内角A,B,C所对边分别为a,b,c,且csinA+acos(C+$\frac{π}{6}$)=0.
(1)求角C;
(2)若c=$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知两点A(0,-1),B(0,1),P(x,y)是曲线C上一动点,直线PA、PB斜率的平方差为1.
(1)求曲线C的方程;
(2)E(x1,y1),F(x2,y2)是曲线C上不同的两点,Q(2,3)是线段EF的中点,线段EF的垂直平分线交曲线C于G,H两点,问E,F,G,H是否共圆?若共圆,求圆的标准方程;若不共圆,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A={0,|x|},B={1,0,-1},若A⊆B,则x=±1;A∪B={-1,0,1};∁BA={-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.满足{0,1}⊆P⊆{0,1,2,3,4,5}的集合P的个数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$a={log_3}\sqrt{2}$,$b={log_{\frac{1}{3}}}2$,$c={2^{\frac{1}{3}}}$,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|-1≤x≤6},B={x|m+1≤x≤3m-1}.
(1)若B⊆A,求实数m的取值集合C;
(2)求函数f(x)=x2-2ax+3,x∈C的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设z=3+4i(i是虚数单位),则$|z|+\overline{z}$=8-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}{4-|8x-12|,1≤x≤2}\\{\frac{1}{2}f(\frac{x}{2}),x>2}\end{array}\right.$,则其图象上与函数g(x)=log6(-x)图象上关于y轴对称的点共有(  )组.
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案