精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为R,其导函数为f′(x),且f(x)+xf′(x)<0恒成立,则三个数-f(-1),f(1),3f(3)的大小关系为(  )
A、-f(-1)<f(1)<3f(3)
B、f(1)<-f(-1)<3f(3)
C、-f(-1)<3f(3)<f(1)
D、3f(3)<f(1)<-f(-1)
考点:利用导数研究函数的单调性,导数的运算,不等关系与不等式
专题:导数的综合应用
分析:根据条件,构造函数g(x)=xf(x),判断函数的单调性即可得到结论.
解答: 解:构造函数g(x)=xf(x),则g′(x)=[xf(x)]′=f(x)+xf′(x)<0,
则g(x)单调递减,
则g(-1)>g(1)>g(3),
即3f(3)<f(1)<-f(-1),
故选:D.
点评:本题主要考查函数值的大小比较,根据条件构造函数g(x)=xf(x)利用导数判断函数的单调性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的方程x2-ax+a=0在(0,2)内恰有唯一实数解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=3,AC=2,BC=
10
,则
CA
AB
=(  )
A、
3
2
B、
2
3
C、-
2
3
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明“42n-1+3n+1(n∈N*)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对42k+1+3k+2变形正确的是(  )
A、16(42k-1+3k+1)-13×3k+1
B、4×42k+9×3k
C、(42k-1+3k+1)+15×42k-1+2×3k+1
D、3(42k-1+3k+1)-13×42k-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若三个三角形的三边长分别为:(1)4、6、8;(2)10、24、26;(3)10、12、14.则其中分别为锐角三角形、直角三角形、钝角三角形的是(  )
A、(1)(2)(3)
B、(3)(2)(1)
C、(2)(3)(1)
D、(3)(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,S1<0,3S23+2S25=0,则Sn取最小值时,n的值是(  )
A、12B、13C、24D、26

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x-
1
x
9的展开式中x3的系数是(  )
A、84B、-84
C、126D、-126

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,则角B的取值范围是(  )
A、(0,
π
6
]
B、[
π
6
,π)
C、(0,
π
3
]
D、[
π
3
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)与g(x)是定义在R上的可导函数,则“f′(x)=g′(x)”是“f(x)=g(x)”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

同步练习册答案