| A. | (-∞,1) | B. | (-∞,-1) | C. | (1,+∞) | D. | (-1,+∞) |
分析 复数(1-i)(a+i)=a+1+(1-a)i在复平面内对应的点在第二象限,可得$\left\{\begin{array}{l}{a+1<0}\\{1-a>0}\end{array}\right.$,解得a范围.
解答 解:复数(1-i)(a+i)=a+1+(1-a)i在复平面内对应的点在第二象限,
∴$\left\{\begin{array}{l}{a+1<0}\\{1-a>0}\end{array}\right.$,解得a<-1.
则实数a的取值范围是(-∞,-1).
故选:B.
点评 本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∩B={x|x<$\frac{3}{2}$} | B. | A∩B=∅ | C. | A∪B={x|x<$\frac{3}{2}$} | D. | AUB=R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∩B={x|x<0} | B. | A∪B=R | C. | A∪B={x|x>1} | D. | A∩B=∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 总计 | |
| 男生 | |||
| 女生 | |||
| 总计 | 50 |
| 参考数据 | 当x2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联; |
| 当x2>2.706时,有90%的把握判定变量A,B有关联; | |
| 当x2>3.841时,有95%的把握判定变量A,B有关联; | |
| 当x2>6.635时,有99%的把握判定变量A,B有关联. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1]∪[9,+∞) | B. | (0,$\sqrt{3}$]∪[9,+∞) | C. | (0,1]∪[4,+∞) | D. | (0,$\sqrt{3}$]∪[4,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com