精英家教网 > 高中数学 > 题目详情
11.为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到如图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).
(1)请根据题意,将2×2列联表补充完整;
优秀非优秀总计
男生
女生
总计50
(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据当x2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当x2>2.706时,有90%的把握判定变量A,B有关联;
当x2>3.841时,有95%的把握判定变量A,B有关联;
当x2>6.635时,有99%的把握判定变量A,B有关联.

分析 (1)根据图示,将2×2列联表补充完整,
(2)根据列联表计算X2,对照临界值即可得出正确的结论.

解答 解:(1)根据图示,将2×2列联表补充完整如下:

优秀非优秀总计
男生92130
女生11920
总计203050
…(8分)
(2)根据列联表可以求得X2=$\frac{50{×(9×9-11×21)}^{2}}{20×30×20×30}$≈3.125>2.706;
(式子列对结果不对得5分) …(14分)
因此有90%的把握认为该学科成绩与性别有关.…(17分)

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,$\overrightarrow{AB}•\overrightarrow{AC}$=-6,S△ABC=3,求A和a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为-1,-2,-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知i是虚数单位,m是实数,z=(m2-5m+6)+(m-2)i,当m为何值时,z是
(1)实数            (2)虚数             (3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(4-x)ex-2,试判断是否存在m使得y=f(x)与直线3x-2y+m=0(m为确定的常数)相切?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法中错误的是(  )
A.总体中的个体数不多时宜用简单随机抽样
B.系统抽样过程中,在总体均分后的每一部分中抽取一个个体,得到所需样本
C.百货商场的抓奖活动是抽签法
D.整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C截直线y=1所得线段的长度为2$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案