精英家教网 > 高中数学 > 题目详情
12.设A,B是椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是(  )
A.(0,1]∪[9,+∞)B.(0,$\sqrt{3}$]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,$\sqrt{3}$]∪[4,+∞)

分析 分类讨论,由要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,当假设椭圆的焦点在x轴上,tan∠AMO=$\frac{\sqrt{3}}{\sqrt{m}}$≥tan60°,当即可求得椭圆的焦点在y轴上时,m>3,tan∠AMO=$\frac{\sqrt{m}}{\sqrt{3}}$≥tan60°=$\sqrt{3}$,即可求得m的取值范围.

解答 解:假设椭圆的焦点在x轴上,则0<m<3时,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,
∠AMB≥120°,∠AMO≥60°,tan∠AMO=$\frac{\sqrt{3}}{\sqrt{m}}$≥tan60°=$\sqrt{3}$,
解得:0<m≤1;

当椭圆的焦点在y轴上时,m>3,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,
∠AMB≥120°,∠AMO≥60°,tan∠AMO=$\frac{\sqrt{m}}{\sqrt{3}}$≥tan60°=$\sqrt{3}$,解得:m≥9,
∴m的取值范围是(0,1]∪[9,+∞)
故选A.

点评 本题考查椭圆的标准方程,特殊角的三角函数值,考查分类讨论思想及数形结合思想的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法中错误的是(  )
A.总体中的个体数不多时宜用简单随机抽样
B.系统抽样过程中,在总体均分后的每一部分中抽取一个个体,得到所需样本
C.百货商场的抓奖活动是抽签法
D.整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C截直线y=1所得线段的长度为2$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(x-$\sqrt{2x-1}$)e-x(x≥$\frac{1}{2}$).
(1)求f(x)的导函数;
(2)求f(x)在区间[$\frac{1}{2}$,+∞)上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设A,B为曲线C:y=$\frac{{x}^{2}}{4}$上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=cos(x+$\frac{π}{3}$),则下列结论错误的是(  )
A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=$\frac{8π}{3}$对称
C.f(x+π)的一个零点为x=$\frac{π}{6}$D.f(x)在($\frac{π}{2}$,π)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sinα-cosα=$\frac{4}{3}$,则sin2α=(  )
A.-$\frac{7}{9}$B.-$\frac{2}{9}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

同步练习册答案