精英家教网 > 高中数学 > 题目详情
17.在集合{x|x=$\frac{nπ}{6}$,n=1,2,3…,10}中任取一个元素,所取元素恰好满足方程sinx=$\frac{\sqrt{3}}{2}$的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 先求出基本事件总数,再求出所取元素恰好满足方程sinx=$\frac{\sqrt{3}}{2}$的基本事件个数,由此能求出所取元素恰好满足方程sinx=$\frac{\sqrt{3}}{2}$的概率.

解答 解:在集合{x|x=$\frac{nπ}{6}$,n=1,2,3…,10}中任取一个元素,
基本事件总数为10,
所取元素恰好满足方程sinx=$\frac{\sqrt{3}}{2}$的基本事件为x=$\frac{2π}{6}$和x=$\frac{4π}{6}$,
∴所取元素恰好满足方程sinx=$\frac{\sqrt{3}}{2}$的概率p=$\frac{2}{10}=\frac{1}{5}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对应的边分别为a,b,c,若$\frac{sinA}{a}=\frac{\sqrt{3}cosC}{c}$,则∠C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数集M={a1,a2,…,an}(0≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),ai+aj与aj-ai两数中至少有一个属于M.
(Ⅰ)分别判断数集{0,1,3}与{0,2,3,5}是否具有性质P,并说明理由;
(Ⅱ)证明:a1=0,且an=$\frac{2}{n}({a_1}+{a_2}+…+{a_{n-1}}+{a_n})$;
(Ⅲ)当n=5时,证明:a1,a2,a3,a4,a5成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.记等差数列{an}的前n项和为Sn,若S3=2a3,S5=15,则a2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p;$\frac{1}{2}$≤x≤1,命题q:(x-a)(x-a-1)≤0,若¬p是¬q的必要不充分条件,则实数a的取值范围是(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{1}{3}$,$\frac{1}{2}$]D.$(\frac{1}{3},\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式x2-2x+m>0在R上恒成立的必要不充分条件是(  )
A.m>2B.0<m<1C.m>0D.m>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在函数y=xcosx,y=ex+x2,$y=lg\sqrt{{x^2}-2}$,y=xsinx偶函数的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{(1+x)(2-x)}$的定义域是集合A,函数g(x)=ln(x-a)的定义域是集合B.
(1)求集合A、B;
(2)若C={x|2${\;}^{{x}^{2}-2x-3}$<1},求A∩C.

查看答案和解析>>

同步练习册答案