精英家教网 > 高中数学 > 题目详情
两灯塔A、B与海洋观察站C的距离都等于2km,灯塔A在C北偏东45°处,灯塔B在C南偏东15°处,则A、B之间的距离为
 
考点:解三角形的实际应用
专题:应用题,解三角形
分析:根据题意画出相应的图形,如图所示,根据平角的定义,由已知的15°和45°,求出∠ACB的度数,在三角形ABC中,再由|AC|=|BC|=2km,利用余弦定理即可表示出|AB|的值.
解答: 解:根据图形可知∠ACB=120°,
在△ABC中,|AC|=|BC|=2km,
根据余弦定理得:|AB|2=22+22-2×2×2cos120°=12,
所以A,B 之间的距离为2
3
km.
故答案为:2
3
km.
点评:本题考查解三角形的实际应用,涉及的知识有方位角的画法,余弦定理,利用了数形结合的思想,解答此类题的关键是审清题意,画出相应的图形,利用余弦定理建立已知与未知间的关系,从而达到解决问题的目的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x2+y2-i[
.
3(x+yi)
]=1-(
.
3i
),设复数z=x+yi(x,y∈R),求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}、{bn}满足a1=1,a2=3,an+1=
anbn+1
2bn
,anbn=an+1bn+1
(Ⅰ)求(an)的通项公式;
(Ⅱ)设数列{cn}满足cn=bnlog3an,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x2-3x-4>0},Q={x|a+1≤x≤2a-1},若Q?P,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x-y+1≥0
x+y≤0
y≥0
,则目标函数z=y-2x的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若输出的y值为2,则所有这样的x值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y≥1
x-1≥0
x-y≤1
,则e2x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,x+2y=4,则
2
x
+
1
y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.
(Ⅰ)求抛物线的方程;
(Ⅱ)设点A(x1,y1),B(x1,y1)(y1≤0,i=1,2)是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.

查看答案和解析>>

同步练习册答案