精英家教网 > 高中数学 > 题目详情
已知f(x)是定义域在R上的奇函数,当x∈[0,+∞)时,f(x)=x2+2x,则f(-1)=
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由奇函数的性质得f(-1)=-f(1),利用已知的解析式即可求值.
解答: 解:因为f(x)是定义域在R上的奇函数,
所以f(-1)=-f(1),
又当x∈[0,+∞)时,f(x)=x2+2x,
则f(1)=1+2=3,即f(-1)=-3,
故答案为:-3.
点评:本题考查利用函数的奇偶性求函数值,以及转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c都是实数.已知命题p:若a>b,则a+c>b+c;命题q:若a>b>0,则ac>bc.则下列命题中为真命题的是(  )
A、(?p)∨q
B、p∧q
C、(?p)∧(?q)
D、(?p)∨(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{an}对任意的正整数n,都有|an+1|+|an|=d(d为常数),则称{an}为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”{an}中,a1=2,“绝对公和”d=2,则其前2013项和S2013的最小值为(  )
A、-2008
B、-2010
C、-2012
D、-2014

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-1-xlnx,(x>0)
(Ⅰ)求函数f(x)的最大值
(Ⅱ)设g(x)=
lnx
x-1
(x>1),试分析函数g(x)的单调性
(Ⅲ)利用(Ⅱ)的结论,证明:当n>m>0时,(1+n)m<(1+m)n

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个等差数列依次写出,其中ami表示第m行第i个数,i=1,2,3,…,m.那么第m行的m个数之和是
 

第1行:2;
第2行:5,8;
第3行:11,14,17;
第4行:20,23,26,29;

第m行:am1,am2,am3,…,amm

查看答案和解析>>

科目:高中数学 来源: 题型:

一人从点A出发,向东走500米到达点B,接着向北偏东60°走300米到达点C,然后再向北偏东45°走100米到达点D.试选择适当的比例尺,用向量表示这个人的位移.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,且点A(an,an+1)(n∈N*)在直线y=x+2上,数列{bn}的前n项和为{Sn},且Sn=2bn-2(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求b1,b2的值,并求数列{bn}的通项公式;
(Ⅲ)设cn=bnsin2
2
-ancos2
2
(n∈N*),求数列{cn}的前8项和T8

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“若可导函数f(x)是奇函数,则f′(x)是偶函数”的否命题是(  )
A、若可导函数f(x)是偶函数,则f′(x)是奇函数
B、若可导函数f(x)是奇函数,则f′(x)是奇函数
C、若可导函数f(x)是奇函数,则f′(x)不是偶函数
D、若可导函数f(x)不是奇函数,则f′(x)不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程x2+(y-1)2=4.过点A(0,3)作圆的割线交圆于点P,求线段AP中点的轨迹.

查看答案和解析>>

同步练习册答案