精英家教网 > 高中数学 > 题目详情
14.函数y=2${\;}^{{x}^{2}}$(x∈R)满足(  )
A.在(-∞,+∞)上是增函数
B.在(-∞,+∞)上是减函数
C.在(-∞,0]上是增函数,在[0,+∞)上是减函数
D.在(-∞,0]上是减函数,在[0,+∞)上是增函数

分析 判断偶函数,运用函数在[0,+∞)的单调性,再运用偶函数的性质判断即可.

解答 解:∵函数f(x)=2${\;}^{{x}^{2}}$(x∈R),
∴f(-x)=f(x),
故f(x)为偶函数,
∵0<x1<x2
x${\;}_{1}^{2}$${<x}_{2}^{2}$,
∴2${\;}^{{{x}_{1}}^{2}}$<2${\;}^{{{x}_{2}}^{2}}$,
即f(x${\;}_{1}^{2}$)<f(${x}_{2}^{2}$),
所以在[0,+∞)上是增函数,
根据偶函数的单调性的关系判断得出:在(-∞,0]上是减函数,在[0,+∞)上是增函数
故选:D

点评 本题考查了运用指数函数幂函数的性质,判断符合函数的单调性,关键是掌握好单调性的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{2{x}^{2}+2x}{{x}^{2}+1}$,求f(x)在[0,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.二项式(x+$\frac{a}{x}$)n(n∈N*)的展开式中只有第四项的二项式系数最大,且常数项为-160,则${∫}_{a}^{2}$(x2+sinx)dx的值为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.分解因式:x2+x-(a2-a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合M={y|y=2x2+1,x∈R },N={x∈R|y=$\sqrt{1-x}+1$},则M∪N=R,M∩N={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$,则z=x-2y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合P={-1,0,1},Q={x|$\sqrt{x}$<$\sqrt{2}$},则P∩Q=(  )
A.{0,1}B.{1}C.{0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知四边形ABCD,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(1,1),$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$=$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则四边形ABCD的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.两条直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直等价于A1A2+B1B2=0.

查看答案和解析>>

同步练习册答案