精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=|x-1|,不等式f(x+5)≤3m(m>0)的解集为[-7,-1]
(1)求m的值;
(2)已知a>0,b>0,且2a2+b2=3m,求2a$\sqrt{1+{b}^{2}}$的最大值.

分析 (1)解绝对值不等式求得它的解集为[-4-3m,3m-4],再根据它的解集为[-7,-1],可得$\left\{\begin{array}{l}{-4-3m=-7}\\{3m-4=-1}\end{array}\right.$,从而求得 m的值.
(2)根据2a$\sqrt{1+{b}^{2}}$=$\sqrt{2}$•$\sqrt{2}$a•$\sqrt{1{+b}^{2}}$,利用基本不等式求得它的最大值.

解答 解:(1)函数f(x)=|x-1|,不等式f(x+5)≤3m(m>0),即|x+4|≤3m,即-3m≤x+4≤3m,
即-4-3m≤x≤3m-4,即不等式的解集为[-4-3m,3m-4].
再根据它的解集为[-7,-1],可得$\left\{\begin{array}{l}{-4-3m=-7}\\{3m-4=-1}\end{array}\right.$,∴m=1.
(2)已知a>0,b>0,且2a2+b2=3m=3,∴2a$\sqrt{1+{b}^{2}}$=$\sqrt{2}$•$\sqrt{2}$a•$\sqrt{1{+b}^{2}}$≤$\sqrt{2}$•$\frac{{2a}^{2}+1{+b}^{2}}{2}$=2$\sqrt{2}$,
当且仅当$\sqrt{2}$a=$\sqrt{1{+b}^{2}}$ 时,即a=b=1时,等号成立,故2a$\sqrt{1+{b}^{2}}$的最大值为2$\sqrt{2}$.

点评 本题主要考查绝对值不等式的解法,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知元素为实数的集合S满足下列条件:①0∉S,1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(1)已知2∈S,试求出S中的其它所有元素;
(2)若{3,-3}⊆S,求使元素个数最少的集合S;
(3)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高一共录取新生1000名,为了解学生视力情况,校医随机抽取了100名学生进行视力测试,并得到如下频率分布直方图.
(Ⅰ)若视力在4.6~4.8的学生有24人,试估计高一新生视力在4.8以上的人数;
1~50名951~1000名
近视4132
不近视918
(Ⅱ)校医发现学习成绩较高的学生近视率较高,又在抽取的100名学生中,对成绩在前50名的学生和其他学生分别进行统计,得到如右数据,根据这些数据,校医能否有超过95%的把握认为近视与学习成绩有关?
(Ⅲ)用分层抽样的方法从(Ⅱ)中27名不近视的学生中抽出6人,再从这6人中任抽2人,其中抽到成绩在前50名的学生人数为ξ,求ξ的分布列和数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设等差数列{an}的前n项和Sn满足S5=15,且2a2,a6,a8+1成公比大于1的等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数x,y满足$\left\{\begin{array}{l}{x≤4}\\{x+y-2≥0}\\{x-y+8≥0}\end{array}\right.$,若z=$\frac{1}{2}$ax+y的最大值为2a+12,最小值为2a-2,则a的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.我国魏晋时期的数学家刘徽,他在注《九章算术》中采用正多边形面积逐渐逼近圆面积的算法计算圆周率π,用刘徽自己的原话就是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣.”设计程序框图是计算圆周率率不足近似值的算法,其中圆的半径为1.请问程序中输出的S是圆的内接正(  )边形的面积.
A.1024B.2048C.3072D.1536

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\frac{1-ai}{1+i}=b-i$(a,b∈R),其中i为虚数单位,则a+b=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=(x+1)(2x+3a)为偶函数,则a=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.8x+5=0与2x+3y+1=0的夹角为90°-arctan$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案