精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow{a}$=(2,x,5),$\overrightarrow{b}$=(4,6,y),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则(  )
A.x=3,y=10B.x=6,y=10C.x=3,y=15D.x=6,y=15

分析 根据平面向量的共线定理,列出方程组,求出x、y的值.

解答 解:∵$\overrightarrow{a}$=(2,x,5),$\overrightarrow{b}$=(4,6,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
设$\overrightarrow{a}$=λ$\overrightarrow{b}$,λ∈R,
则$\left\{\begin{array}{l}{2=4λ}\\{x=6λ}\\{5=λy}\end{array}\right.$,
解得$\left\{\begin{array}{l}{λ=\frac{1}{2}}\\{x=3}\\{y=10}\end{array}\right.$,
即x=3,y=10.
故选:A.

点评 本题考查了空间向量的坐标表示与运算问题,也考查了向量共线的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2<1},集合B={x|$\frac{1}{x}$<1},则A∩B=(  )
A.(-1,0)B.(0,1)C.(1,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2-ln|x|的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别为角A,B,C所对的边,角C是钝角,且sinB=$\frac{b}{2c}$.
(Ⅰ)求角C的值;
(Ⅱ)若b=2,△ABC的面积为$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为提高在校学生的安全意识,防止安全事故的发生,学校拟在高三年级的1-10班中随机抽取3个班进行网上安全知识竞赛,则选择的3个班恰好为连续编号的3个班的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{25}$C.$\frac{1}{15}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测的公路北侧一山顶D在西偏北30°的方向上,行驶1200m后到达B处,测得此山顶D在西偏北75°的方向上,仰角为60°,则此山的高度CD=600$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin2(ωx)-$\frac{1}{2}$(ω>0)的最小正周期为$\frac{π}{2}$,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于定义在R上的函数f(x),如果存在实数a,使得f(a+x)•f(a-x)=1对任意实数x∈R恒成立,则称f(x)为关于a的“倒函数”.已知定义在R上的函数f(x)是关于0和1的“倒函数”,且当x∈[0,1]时,f(x)的取值范围为[1,2],则当x∈[-2016,2016]时,f(x)的取值范围为(  )
A.[1,2]B.$[\frac{1}{2},2]$C.$[\frac{1}{2},2016]$D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图.在平面直角坐标系中,O是坐标原点,二次函数y=x2+c的图象抛物线交x轴于点A、B,(点A在点B的左侧),与y轴交点C(0,-3).
(1)求∠ABC的度数;
(2)若点D是第四象限内抛物线上一点,△ADC的面积为$\frac{3\sqrt{3}}{2}$,求点D的坐标;
(3)若将△OBC绕平面内某一点顺时针旋转60°得到△O′B′C,点O′,B′均落在此抛物线上,求此时O′的坐标.

查看答案和解析>>

同步练习册答案