精英家教网 > 高中数学 > 题目详情
19.已知集合A={x|x2<1},集合B={x|$\frac{1}{x}$<1},则A∩B=(  )
A.(-1,0)B.(0,1)C.(1,+∞)D.

分析 求出A与B中不等式的解集,分别确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式解得:-1<x<1,即A=(-1,1),
当x<0时,B中不等式变形得:x<1,此时x<0;
当x>0时,B中不等式变形得:x>1,此时x>1,
∴B=(-∞,0)∪(1,+∞),
则A∩B=(-1,0),
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.当x∈[-2,0)时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是a≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$f(x)={sin^2}x+cosx,x∈[{-\frac{π}{3},\frac{2π}{3}}]$,则f(x)的值域为[$\frac{1}{4}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.sin80°cos20°-cos80°sin20°的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.执行如图所示的程序框图,当输入n=10,求其运行的结果.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出以下命题:
①方程4x2-8x+3=0的两个根可分别作为椭圆与双曲线的离心率;
②若向量$\overrightarrow{a}$=(m,-2,3)与$\overrightarrow{b}$=(5,m2,1)的夹角为锐角,则-$\frac{1}{2}$<m<3;
③在正项等差数列{an}中,$\frac{a_3}{a_2+a_9}$+$\frac{a_8}{a_5+a_6}$=1;
④当x>0时,函数f(x)=x2+$\frac{1}{x^2}$-8x-$\frac{8}{x}$+22的最小值是4.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C的圆心在直线x-2y=0上.
(1)若圆C与y轴的正半轴相切,且该圆截x轴所得弦的长为2$\sqrt{3}$,求圆C的标准方程;
(2)在(1)的条件下,直线l:y=-2x+b与圆C交于两点A,B,若以AB为直径的圆过坐标原点O,求实数b的值;
(3)已知点N(0,3),圆C的半径为3,且圆心C在第一象限,若圆C上存在点M,使MN=2MO(O为坐标原点),求圆心C的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若“?x∈[$\frac{π}{3}$,$\frac{2π}{3}$],cosx≤m”是真命题,则实数m的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(2,x,5),$\overrightarrow{b}$=(4,6,y),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则(  )
A.x=3,y=10B.x=6,y=10C.x=3,y=15D.x=6,y=15

查看答案和解析>>

同步练习册答案