精英家教网 > 高中数学 > 题目详情
1.如图,已知正三棱柱ABC-A1B1C1所有棱长均为a,D为BB1上一点,则三棱锥C1-ACD的体积为$\frac{{\sqrt{3}}}{12}{a^3}$.

分析 如图所示,取AC的中点E,连接BE,由△ABC是等边三角形,可得BE⊥AC,利用面面垂直的性质可得:BE⊥平面侧面ACC1A1,再利用三棱锥C1-ACD的体积V=${V}_{三棱锥D-AC{C}_{1}}$=$\frac{1}{3}×BE•{S}_{△AC{C}_{1}}$,即可得出.

解答 解:如图所示,取AC的中点E,连接BE,
∵△ABC是等边三角形,
∴BE⊥AC,
由正三棱柱ABC-A1B1C1,可得侧面ACC1A1⊥底面ABC,侧面ACC1A1∩底面ABC,
∴BE⊥平面侧面ACC1A1
${S}_{△AC{C}_{1}}$=$\frac{1}{2}AC•C{C}_{1}$-$\frac{1}{2}×{a}^{2}$.
∴三棱锥C1-ACD的体积V=${V}_{三棱锥D-AC{C}_{1}}$=$\frac{1}{3}×BE•{S}_{△AC{C}_{1}}$=$\frac{1}{3}×\frac{\sqrt{3}}{2}a×\frac{1}{2}{a}^{2}$=$\frac{{\sqrt{3}}}{12}{a^3}$.
故答案为:$\frac{{\sqrt{3}}}{12}{a^3}$.

点评 本题考查了面面垂直的性质、三棱锥的体积计算公式、等边三角形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若在区间(a,b)上任意x满足f(x)>0,f′(x)>0,f″(x)>0,其中f′(x)为f(x)的导数,f″(x)是f′(x)的导数,则称f(x)是区间(a,b)上的“δ”函数.已知函数φ(x)=$\frac{m}{3}$x3-$\frac{1}{2}$x2-x+ex是区间(0,+∞)上的“δ”函数.
(1)实数m的取值范围是m>-$\frac{1}{2}$;
(2)若g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-x+ex,记S1=${∫}_{a}^{b}$g(x)dx,S2=$\frac{g(a)+g(b)}{2}$•(b-a),S3=g(a)(b-a),其中b>a>0,则S1,S2,S3中最大的为s2>s1>s3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在空间中,下列结论正确的是(  )
A.平行于同一直线的两直线平行B.垂直于同一直线的两直线平行
C.平行于同一平面的两直线平行D.垂直于同一平面的两直线垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{ax+b}{x}{e^x}$,a,b∈R,且a>0
(1)当a=2,b=1,求函数f(x)的极值;
(2)设g(x)=a(x-1)ex-f(x),若存在x>1,使得g(x)+g′(x)=0成立,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形ABCD所在平面与直角三角形ABE所在平面互相垂直,AE⊥BE,点M,N分别是AE,CD的中点.
(1)求证:MN∥平面BCE;
(2)求证:平面BCE⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在△ABC中,∠A=60°,AB=2AC=8,过C作△ABC外接圆的切线CD,BD⊥CD于D,BD与外接圆交于点E,则DE=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M,T(不与A,B重合),连结MC,MB,OT.
(Ⅰ)求证:MTCO四点共圆;
(Ⅱ)求证:MD=2MC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项都为正数的数列{an}的前n项和为Sn,且4Sn=(an+1)2
(1)求证:数列{an}为等差数列;
(2)已知数列{bn}满足:b1=2,bn+1=bn+$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的通项公式;
(3)设cn=$\frac{n}{({a}_{n}{a}_{n+1})^{2}}$,记数列{cn}的前n项和为Tn,如果对于任意的n∈N*,不等式λTn<$\frac{n+1}{2n+1}$[n+18(-1)n+1]都成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$(a∈R).
(1)若函数f(x)为奇函数,求a的值;
(2)当a=-1,若不等式f(k-t2)+f(|2t-1|)<0对于任意的t∈[-3,2]恒成立,求实数k的取值范围;
(3)当a≠0时,存在区间[m,n],使得函数f(x)在[m,n]的值域为[2m,2n],求a的取值范围.

查看答案和解析>>

同步练习册答案