精英家教网 > 高中数学 > 题目详情
10.设椭圆$\frac{x^2}{m^2}$+$\frac{y^2}{n^2}$=1,双曲线$\frac{x^2}{m^2}$-$\frac{y^2}{n^2}$=1,(其中m>n>0)的离心率分别为e1,e2,则(  )
A.e1•e2>1B.e1•e2<1
C.e1•e2=1D.e1•e2与1大小不确定

分析 由椭圆方程与双曲线方程分别求出椭圆与双曲线的离心率,作积后结合m>n得答案.

解答 解:在椭圆$\frac{x^2}{m^2}$+$\frac{y^2}{n^2}$=1中,${c}_{1}=\sqrt{{m}^{2}-{n}^{2}}$,
∴${e}_{1}=\frac{{c}_{1}}{m}=\frac{\sqrt{{m}^{2}-{n}^{2}}}{m}$,
在双曲线$\frac{x^2}{m^2}$-$\frac{y^2}{n^2}$=1中,${c}_{2}=\sqrt{{m}^{2}+{n}^{2}}$,
∴${e}_{2}=\frac{{c}_{2}}{m}=\frac{\sqrt{{m}^{2}+{n}^{2}}}{m}$,
∴${e}_{1}•{e}_{2}=\frac{\sqrt{{m}^{2}-{n}^{2}}}{m}•\frac{\sqrt{{m}^{2}+{n}^{2}}}{m}$=$\sqrt{\frac{{m}^{4}-{n}^{4}}{{m}^{4}}}=\sqrt{1-(\frac{n}{m})^{4}}<1$.
故选:B.

点评 本题考查椭圆与双曲线的简单性质,考查圆锥曲线离心率的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知某正三棱锥的三视图如图所示,则该正三棱锥的侧视图的面积为(  )
A.$9\sqrt{2}$B.9C.3$\sqrt{3}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx的图象与y=9tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.光线从点A(-2,1)射到x轴后反射到B(4,3)则光线从A到B经过的总路线为(  )
A.2$\sqrt{10}$B.2$\sqrt{13}$C.2$\sqrt{11}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知O是边长为1的正三角形ABC的中心,则($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,AB⊥BC,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax2,其中a为实常数.
(1)讨论函数f(x)的极值点个数;
(2)若函数f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程x2sinθ-y2cosθ=1(0<θ<π)表示焦点在y轴上的椭圆,则θ的取值范围是($\frac{π}{2},\frac{3π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在极坐标系中,点$(2,\frac{5π}{6})$到直线$ρsin(θ-\frac{π}{3})=4$的距离为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案