分析 (Ⅰ)在△BAC中,利用余弦定理求∠BAC的大小;
(Ⅱ)利用三角形的面积公式,即可求四边形ABCD的面积.
解答 解:(Ⅰ)由题意,在△BAC中,$cos∠BAC=\frac{{A{B^2}+A{C^2}-B{C^2}}}{2•AB•AC}=\frac{1}{2}$,(4分)
则$∠BAC=\frac{π}{3}$.(6分)
(Ⅱ)在△BAC中,$sin∠ACD=cos∠ACB=\frac{{B{C^2}+A{C^2}-A{B^2}}}{2•BC•AC}=\frac{11}{14}$,(8分)
则${S_{△ACD}}=\frac{1}{2}AC•CD•sin∠ACD=\frac{132}{7}$,${S_{△ABC}}=\frac{1}{2}AB•AC•sin∠BAC=10\sqrt{3}$.
综上四边形ABCD的面积为$\frac{132}{7}+10\sqrt{3}$.(12分)
点评 本题考查解三角形的相关知识,考查余弦定理,三角形面积的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,0] | C. | (-∞,a) | D. | (-∞,a] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x(个) | 2 | 3 | 4 | 5 | 6 |
| y(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com