精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和为Sn,满足$2{a_n}={2^{n+1}}+2{a_{n-1}},({n≥2,n∈{N^*}})$,且a1=3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_n}+1}}<\frac{1}{2}$.

分析 (Ⅰ)由题意可得:${a_n}-{a_{n-1}}={2^n}$,再利用累加求和方法与等比数列的求和公式即可得出.
(II)利用等比数列的求和公式与数列的单调性即可得出.

解答 (Ⅰ)解:由题意可得:${a_n}-{a_{n-1}}={2^n}$…..(3分)
累加得∴${a_n}-{a_1}={2^2}+{2^3}+…{2^n}$…(5分)
∴${a_n}={2^{n+1}}-1$…(6分)
(Ⅱ)证明:${a_n}+1={2^{n+1}}$,
∴$\left\{{\frac{1}{{{a_{n+1}}+1}}}\right\}$是首项为$\frac{1}{4}$,公比为$\frac{1}{2}$的等比数列,
因此$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_n}+1}}=\frac{{\frac{1}{4}({1-\frac{1}{2^n}})}}{{1-\frac{1}{2}}}$…(9分)
=$\frac{1}{2}({1-\frac{1}{2^n}})$…..(11分)
$<\frac{1}{2}$….(12分)

点评 本题考查了累加求和方法、等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是R上的奇函数,当x>0时,f(x)=ex+x2,则不等式f(3-x2)>f(2x)的解集为(  )
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足an+1+(-1)nan=2n-1,若a1=1,则a3=1,前60项的和为1830.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ln(e2x+1)-mx为偶函数,其中e为自然对数的底数,则m=1,若a2+ab+4b2≤m,则ab的取值范围是[-$\frac{1}{3}$,$\frac{1}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数a,b满足3+log2a=1+log4b=log8(a+b),则a=$\frac{1}{16}$,b=$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由曲线y=x2+1、直线y=-x+3,x轴与y轴所围成图形的面积为(  )
A.3B.$\frac{10}{3}$C.$\frac{7}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四边形ABCD中,AB=5,BC=7,AC=8,CD=6,BC⊥CD.
(Ⅰ)求∠BAC的大小;
(Ⅱ)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以下茎叶图记录了某学习小组六名同学在一次数学测试中的成绩(单位:分),已知该组数据的中位数为85,则x的值为8.

查看答案和解析>>

同步练习册答案