精英家教网 > 高中数学 > 题目详情
4.以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}}\right.$(θ为参数,θ∈[0,π]),直线l的参数方程为$\left\{{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}}\right.$(t为参数).
(1)点D在曲线C上,且曲线C在点D处的切线与直线x+y+2=0垂直,求点D的极坐标;
(2)设直线l与曲线C有两个不同的交点,求直线l的斜率的取值范围.

分析 (1)设D点坐标为$({\sqrt{2}cosθ,\sqrt{2}sinθ})$,由曲线C在点D处的切线与直线x+y+2=0垂直,求点D的坐标,化为极坐标可得答案;
(2)先求出直线l:y=k(x-2)+2与半圆x2+y2=2(y≥0)相切时k的值,及AB的斜率,进而可得答案.

解答 解:(1)设D点坐标为$({\sqrt{2}cosθ,\sqrt{2}sinθ})$,
由已知得C是以O(0,0)为圆心,$\sqrt{2}$为半径的上半圆,
因为C在点D处的切线与l垂直,
所以直线OD与直线x+y+2=0的斜率相同,即$θ=\frac{3π}{4}$,
故D点的直角坐标为(-1,1),
极坐标为$({\sqrt{2},\frac{3π}{4}})$;
(2)直线l:y=k(x-2)+2与半圆x2+y2=2(y≥0)相切时,$\frac{{|{2k-2}|}}{{\sqrt{1+{k^2}}}}=\sqrt{2}$,
∴k2-4k+1=0,
∴$k=2-\sqrt{3},k=2+\sqrt{3}$(舍去),
设点$B({-\sqrt{2},0})$,则${k_{AB}}=\frac{2-0}{{2+\sqrt{2}}}=2-\sqrt{2}$,
故直线l的斜率的取值范围为$({2-\sqrt{3},2-\sqrt{2}}]$.

点评 本题考查的知识点是参数方程与普通方程的互化,极坐标方程与平面直角坐标方程的互化,直线与圆的位置关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为(  )
A.588B.480C.450D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则满足f[f(a)]=2f(a)的a的取值范围是(  )
A.[$\frac{2}{3}$,1]B.[0,1]C.[$\frac{2}{3}$,+∞)D.[1,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设递增的等比数列{an}的前n项和为Sn,已知2(an+an+2)=5an+1,且$a_5^2={a_{10}}$,
(1)求数列{an}通项公式及前n项和为Sn
(2)设${b_n}={S_n}•{log_2}{a_{n+1}}({n∈{N^*}})$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=sin2x向右平移$\frac{π}{6}$个单位后,得到y=g(x),则关于y=g(x)的说法正确的是(  )
A.图象关于点$({-\frac{π}{6},0})$中心对称B.图象关于$x=-\frac{π}{6}$轴对称
C.在区间$[{-\frac{5π}{12},-\frac{π}{6}}]$单调递增D.在$[{-\frac{π}{12},\frac{5π}{12}}]$单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是(  )
A.73.3,75,72B.72,75,73.3C.75,72,73.3D.75,73.3,72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F为CE上的点,且BF⊥平面ACE,AC,BD交于G点
(1)求证:AE∥平面BFD
(2)求证:AE⊥平面BCE
(3)求三棱柱C-BGF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的奇函数f(x)对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2016)-f(2015)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,
(1)求f(-1)的值;
(2)求f(x)在x∈[2,4]上的最大值与最小值;
(3)判断f(x)在[2,+∞)上的单调性.

查看答案和解析>>

同步练习册答案