精英家教网 > 高中数学 > 题目详情
12.设递增的等比数列{an}的前n项和为Sn,已知2(an+an+2)=5an+1,且$a_5^2={a_{10}}$,
(1)求数列{an}通项公式及前n项和为Sn
(2)设${b_n}={S_n}•{log_2}{a_{n+1}}({n∈{N^*}})$,求数列{bn}的前n项和为Tn

分析 (1)利用等比数列的通项公式与求和公式即可得出.
(2)利用“错位相减法”、等差数列与等比数列的求和公式即可得出.

解答 解:(1)设等比数列{an}的公比为q,
则由2(an+an+1)=5an+1得,2q2-5q+2=0,解得$q=\frac{1}{2}$或q=2,
又由$a_5^2={a_{10}}$知,${({{a_1}{q^4}})^2}={a_1}{q^9}$,∴a1=q,
∵{an}为递增数列,∴${a_1}=q=2,{a_n}={2^n},{S_n}={2^{n+1}}-2$.
(2)${b_n}={S_n}•{log_2}{a_{n+1}}=({{2^{n+1}}-2})({n+1})=({n+1})•{2^{n+1}}-2({n+1})$,
记数列{(n+1)•2n+1}的首n项和为Pn,则${P_n}=2•{2^2}+3•{2^3}+4•{2^4}+…+({n+1})•{2^{n+1}}$,$2{P_n}=2•{2^3}+3•{2^4}+4•{2^5}+…+({n+1})•{2^{n+2}}$,
两式相减得:$-{P_n}={2^3}+({{2^3}+{2^4}+…+{2^{n+1}}})-({n+1})•{2^{n+2}}={2^3}+\frac{{{2^3}({{2^{n-1}}-1})}}{2-1}-({n+1})•{2^{n+2}}=-n•{2^{n+2}}$,
即${P_n}=n•{2^{n+2}}$,
又{2(n+1)}的前n项和为2(2+3+4+…+n+1)=n(n+3),
∴${T_n}=n•{2^{n+2}}-n({n+3})$.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在公比为正数的等比数列{an}中,a3-a1=$\frac{16}{27}$,a2=-$\frac{2}{9}$,数列{bn}(bn>0)的前n项和为Sn满足Sn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),且S10=100.
( I)求数列{an}和数列{bn}的通项公式;
( II)求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若a>b>0>c,则ac<bc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,则(∁IA)∪(∁IB)=(  )
A.{-5,$\frac{1}{2}$}B.{-5,$\frac{1}{2}$,2}C.{-5,2}D.{$\frac{1}{2}$,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值
(1)若a+a-1=4,则求a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$的值
(2)已知2lg$\frac{x-y}{2}$=lgx+lgy,求log${\;}_{(3-2\sqrt{2})}$$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),若k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则实数k值为(  )
A.$\frac{1}{4}$B.$-\frac{1}{5}$C.$-\frac{2}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}}\right.$(θ为参数,θ∈[0,π]),直线l的参数方程为$\left\{{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}}\right.$(t为参数).
(1)点D在曲线C上,且曲线C在点D处的切线与直线x+y+2=0垂直,求点D的极坐标;
(2)设直线l与曲线C有两个不同的交点,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{2+x}+\sqrt{3-x}$的定义域为[-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.计算lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案