精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x+1|+2|x-1|.
(Ⅰ)解不等式f(x)<4;
(Ⅱ)若不等式f(x)≥|a+1|对任意的x∈R恒成立,求实数a的取值范围.
考点:带绝对值的函数
专题:选作题,不等式
分析:(Ⅰ)利用绝对值的几何意义,写出分段函数,即可解不等式f(x)<4;
(Ⅱ)不等式f(x)≥|a+1|对任意的x∈R恒成立等价于|a+1|≤2,即可求实数a的取值范围.
解答: 解:(I)f(x)=
-3x+1,x≤-1
-x+3,-1<x≤1
3x-1,x>1
.…(1分)
当x≤-1时,由-3x+1<4得x>-1,此时无解;
当-1<x≤1时,由-x+3<4得x>-1,∴-1<x≤1;
当x>1时,由3x-1<4得x<
5
3
,∴1<x<
5
3
.…(4分)
综上,所求不等式的解集为{x|-1<x<
5
3
}
.…(5分)
(II)由(I)的函数解析式可以看出函数f(x)在(-∞,1)单调递减,在(1,+∞)单调递增,故f(x)在x=1处取得最小值,最小值为f(1)=2,…(7分)
不等式f(x)≥|a+1|对任意的x∈R恒成立等价于|a+1|≤2,
即-2≤a+1≤2,解得-3≤a≤1,故a的取值范围为{a|-3≤a≤1}.…(10分)
点评:本题主要考查函数的恒成立问题,绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论、转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算∫
 
π
2
0
cosxdx=(  )
A、-1
B、1
C、
π
4
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
2
2

(1)求椭圆C的方程;
(2)若P,Q,M,N椭圆C上四点,已知
PF
FQ
共线,
MF
FN
共线,且
PF
MF
=0,求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体AC1中,棱AB=BC=1,棱BB1=2,连结B1C,过B点作B1C的垂线交CC1于E,交B1C于F.
(1)求证:A1C⊥平面EBD;
(2)求三棱锥A-A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数g(x)=lnx+
1
x
的单调区间和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0).四点(-
3
3
2
)、(1,
3
2
)、(
2
,0)、(
3
,-
3
2
)中有三点在椭圆C上.
(1)求椭圆C的方程;
(2)动直线l过点A(2,0),与y轴交于点R,与椭圆C交于点Q(Q不与A重合).过原点O作直线l的平行线m,直线m与椭圆C的一个交点记为P.问:是否存在常数λ使得|AQ|、λ|OP|、|AR|成等比数列?若存在,请你求出实数λ的值;若不存在,请说明缘由.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式ax2-(a+2)x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-|x|+2a-1,(a≤
1
2
). 
(1)若a=0,求函数f(x)的单调增区间;
(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数满足:①对任意0<x<1,都有f(x)<0;②f(x)+f(y)=f(xy)对任意正实数x、y都成立.
(1)求证:x>1时,f(x)>0;
(2)判断并证明f(x)的奇偶性;
(3)如果f(4)=1,解不等式f(3x+1)+f(2x-6)<3,求x取值范围.

查看答案和解析>>

同步练习册答案