精英家教网 > 高中数学 > 题目详情
12.某企业生产的一种产品的广告费用x(单位:万元)与销售额y(单位:万元)的统计数据如表:
 广告费用x 1 2 3 4 5
 销售额y 10 15 25 45 55
(1)根据上述数据,求出销售额y(万元)关于广告费用x(万元)的线性回归方程;
(2)如果企业要求该产品的销售额不少于36万元,则投入的广告费用应不少于多少万元?
(参考数值:$\sum_{i=1}^{5}{x}_{i}=15$,$\sum_{i=1}^{5}{y}_{i}=150$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}=570$,$\sum_{i=1}^{5}{{x}_{i}}^{2}=55$,$\sum_{i=1}^{5}{{y}_{i}}^{2}=6000$.

回归直线的斜率和截距的最小二乘估计公式分别为:$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$)

分析 (1)根据题意,由表格中的数据计算可得$\overline{x}$、$\overline{y}$的值,进而可得5$\overline{x}$$\overline{y}$与5$\overline{x}$2的值,将其代入回归直线的方程计算可得答案;
(2)根据题意,由(1)求出的回归直线方程可得y=12x-6≥36,解可得x的范围,即可得答案.

解答 解:(1)根据题意,由表格中数据可得:$\overline{x}$=$\frac{1+2+3+4+5}{5}$=3,$\overline{y}$=$\frac{10+15+25+45+55}{5}$=30,
则5$\overline{x}$$\overline{y}$=450,5$\overline{x}$2=45,
$\widehat{b}=\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5\stackrel{-2}{x}}$=$\frac{570-450}{55-45}$=12,
$\widehat{a}$=$\overline{y}$-b$\overline{x}$=30-12×3=-6,
故所求的回归直线的方程$\widehat{y}$=12x-6;
(2)如果企业要求该产品的销售额不少于36万元,
则有y=12x-6≥36,
解可得x≥3.5;
答:投入的广告费用应不少于3.5万元.

点评 本题考查线性回归方程的计算与应用,关键是掌握线性回归直线方程的计算方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某班包括男生甲和女生乙在内共有6名班干部,其中男生4人,女生2人,从中任选3人参加义务劳动. 
(1)求男生甲或女生乙被选中的概率;
(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(A)和P(A|B).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知三棱锥P-ABC的四个顶点都在球O的球面上,△ABC是边长为2$\sqrt{3}$的正三角形,PA⊥平面ABC,若三棱锥P-ABC的体积为2$\sqrt{3}$,则球O的表面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市一家报刊摊点,从报社进一种报纸的价格是每份0.20元,零售价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退给报社,在一个月(以30天计算)中,有20天每天可以售出400份报纸,其余10天每天只能售出250份,但每天从报社买进的份数必须相同,若摊主每天从报杜买进x(250≤x≤400)份,写出这个摊主这个月所获利润y(元)关于x的函数表达式;这个摊主每天从报社进多少份该报纸,才能使每月所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是(  )
A.总存在一个白球,它右侧的白球和黑球一样多
B.总存在一个黑球,它右侧的白球和黑球一样多
C.总存在一个黑球,它右侧的白球比黑球少一个
D.总存在一个白球,它右侧的白球比黑球少一个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点,且P点坐标为($\frac{1}{2}$,1),|$\overrightarrow{OQ}$|=2.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f(x)•g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(  )
A.1,2,3,4,5B.2,4,6,8,10C.4,14,24,34,44D.5,16,27,38,49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在某超市收银台排队付款的人数及其频率如表:
 排队人数 0 1 2 3 4人 以上
 频率0.1  0.15 0.150.25 0.15 
视频率为概率,则至少有2人排队付款的概率为0.75.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知随机变量ξ服从正态分布B(1,22),若P(ξ≤2)=0.8,则P(0≤ξ≤2)=(  )
A.1B.0.8C.0.6D.0.3

查看答案和解析>>

同步练习册答案