精英家教网 > 高中数学 > 题目详情
4.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,动点M在直线l上,线段MF的中垂线为m,则直线m与抛物线C交点的个数为(  )
A.0B.1C.2D.无法确定

分析 设出M坐标,求出中点坐标,然后求出中垂线方程,与抛物线方程联立,求解即可.

解答 解:抛物线C:y2=2px(p>0)的焦点为F($\frac{p}{2},0$),准线为l,x=$-\frac{p}{2}$,
动点M在直线l上,设M($-\frac{p}{2},t$),线段MF的中点坐标(0,$\frac{t}{2}$),MF的斜率:$\frac{t-t}{-\frac{p}{2}-0}$=-$\frac{t}{p}$,
中垂线为m的斜率为:$\frac{p}{t}$,中垂线方程为:y-$\frac{t}{2}$=$\frac{p}{t}x$.
由题意可得:$\left\{\begin{array}{l}y-\frac{t}{2}=\frac{p}{t}x\\{y}^{2}=2px\end{array}\right.$,可得${y}^{2}=2t(y-\frac{t}{2})$,即(y-t)2=0,解得y=t,
方程组只有一个解.
所以直线m与抛物线C交点的个数为:1.
故选:B.

点评 本题考查直线与抛物线方程的综合应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在公比为2的等比数列{an}中,a2与a4的等差中项是5$\sqrt{3}$.
(Ⅰ)求a1的值;
(Ⅱ)若函数y=|a1|sin($\frac{π}{4}$x+φ),|φ|<π,的一部分图象如图所示,M(-1,|a1|),N(3,-|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求tan(φ-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3+bx+2,在X=2处取得极值-14.
(1)求a,b的值;
(2)若f(x)≥kx在(0,2]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知平行六面体ABCD-A1B1C1D1,AC1与平面A1BD,CB1D1交于E,F两点.
以下命题中真命题有①②④_(写出所有正确命题的序号)
①点E,F为线段AC1的两个三等分点;
②四面体AB1CD1的体积是平行六面体ABCD-A1B1C1D1体积的三分之一;
③E为△A1BD的内心;
④若∠A1AB=∠A1AD=∠BAD,AA1=AB=AD,则AC1⊥面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.博彩公司对2015年NBA总决赛做了大胆的预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛.前4场,马刺队胜利的概率为$\frac{1}{2}$,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率将为$\frac{2}{5}$,第7场,马刺队因为有多次打第七场的经验,所以胜利的概率为$\frac{3}{5}$.
(1)分别求出马刺队以4:0,4:1,4:2,4:3胜利的概率及总决赛马刺队获得冠军的概率;
(2)随机变量X为分出总冠军时比赛的场数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,正方体ABCD-A1B1C1D1棱长为2,一质点从顶点A射向正方体A1B1C1D1区域内任意一点E,遇正方体的面反射,则恰好经过两次反射落入以正方形ABCD中心O为圆心半径为1的圆内的概率为(  )
A.$\frac{π}{8}$B.1-$\frac{π}{4}$C.$\frac{π}{2}$-1D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正实数a,b,c满足a2+b2=c2,求(1+$\frac{c}{a}$)(1+$\frac{c}{b}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{\frac{1}{1+\frac{1}{x}}}$+3${\;}^{lo{g}_{2}x}$的定义域用区间表示为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图甲,四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=$\sqrt{5}$,AB=AD=$\sqrt{2}$.将(图甲)沿直线BD折起,使二面角A-BD-C为60°(如图乙),则点B到平面ACD的距为$\frac{2\sqrt{21}}{7}$.

查看答案和解析>>

同步练习册答案