精英家教网 > 高中数学 > 题目详情
14.若二项式(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n的展开式的奇数项的二项式系数和为32,则展开式的常数项是-160.

分析 根据(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n的展开式中奇数项的二项式系数和是32,求出n的值,由此求出该二项式展开式中的常数项.

解答 解:在(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n的展开式中,奇数项的二项式系数的和是32,
∴2n-1=32,
解得n=6;
∴${(2\sqrt{x}-\frac{1}{\sqrt{x}})}^{6}$的展开式中,
Tr+1=${C}_{6}^{r}$•${(2\sqrt{x})}^{6-r}$•${(-\frac{1}{\sqrt{x}})}^{r}$
=(-1)r•${C}_{6}^{r}$•26-r•x3-r
令3-r=0,
解得r=3;
∴该二项式展开式中的常数项为
(-1)3•${C}_{6}^{3}$•26-3=-20×23=-160.
故答案为:-160.

点评 本题考查了二项式定理的应用问题,也考查了逻辑推理与计算能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22015的末位数字是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求面积为10π,且经过两圆x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0的交点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知a=4,b=x,A=60°,如果解该三角形有两解,则(  )
A.x>4B.0<x≤4C.x≤$\frac{8\sqrt{3}}{3}$D.4<x<$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{a}$-$\overrightarrow{b}$|=1.则|$\overrightarrow{b}$|的取值范围是(  )
A.[0,1]B.[1,3]C.[2,4]D.[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sinx•cosx+cos2x
(1)求最小正周期f(x)的最大值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(5,7),利用计算器,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ(精确到1°)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=sin($\frac{π}{4}$-2x),要使不等式|f(x)-m|<1对任意x∈R都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知P为椭圆$\frac{x^2}{4}+{y^2}$=1上的任意一点,O为坐标原点,M在线段OP上,且$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OP}$
(Ⅰ)求点M的轨迹方程;
(Ⅱ)已知直线3x+6y-2=0与M的轨迹相交于A,B两点,求△OAB的面积.

查看答案和解析>>

同步练习册答案