分析 (1)由条件利用正弦定理、诱导公式求得cosB的值,可得B的值.
(2)由条件利用余弦定理求得ac=13,可得△ABC的面积$\frac{1}{2}$ac•sinB的值.
解答 解:(1)由$a=\frac{1}{2}c+bcosC$,可得2sinA=sinC+2sinBcosC,
∵A=π-(B+C),∴2sin(B+C)=sinC+2sinBcosC,即sinC(2cosB-1)=0.
∵0<C<π,∴sinC≠0,∴$cosB=\frac{1}{2}$,$B=\frac{π}{3}$.
(2)由余弦定理:b2=a2+c2-2accosB,有13=(a+c)2-3ac,∴ac=4,
故${S_{△ABC}}=\frac{1}{2}acsinB=\sqrt{3}$.
点评 本题主要考查诱导公式、正弦定理和余弦定理的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 9 | C. | 12 | D. | 21 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com