精英家教网 > 高中数学 > 题目详情
12.已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+1)=$\frac{1}{f(x)}$;②函数y=f(x+1)的图象关于y轴对称;③对于任意的x1,x2∈[0,1],且x1<x2,都有f(x1)>f(x2),则$f(\frac{3}{2})$,f(2),f(3)从小到大的关系是(  )
A.$f(\frac{3}{2})<f(2)<f(3)$B.$f(3)<f(2)<f(\frac{3}{2})$C.$f(3)<f(\frac{3}{2})<f(2)$D.$f(\frac{3}{2})<f(3)<f(2)$

分析 根据函数y=f(x)满足的三个条件,求出f(x)具有的性质.即可判断$f(\frac{3}{2})$,f(2),f(3)的小大关系.

解答 解:函数f(x)满足f(x+1)=$\frac{1}{f(x)}$,可得f(x)是周期为2的函数;
函数y=f(x+1)的图象关于y轴对称,可得f(-x+1)=f(x+1),
可得函数f(x)的一条对称轴为1;
对于任意的x1,x2∈[0,1],且x1<x2,都有f(x1)>f(x2),
可知函数f(x)在x∈[0,1]上是减函数,
因此:$f(\frac{3}{2})$=f(-$\frac{1}{2}$)=f($\frac{1}{2}$),f(2)=f(0),f(3)=f(1),
∵函数f(x)在x∈[0,1]上是减函数,
∴f(1)<f($\frac{1}{2}$)<(0),即$f(3)<f(\frac{3}{2})<f(2)$.
故选C.

点评 本题考查了函数的周期的计算.对称轴和单调性综合性质的运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.平行四边形ABCD中,AE⊥BD,垂足为E,|$\overrightarrow{AE}$|=2,则$\overrightarrow{AE}$•$\overrightarrow{AC}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义:若$\frac{f(x)}{{x}^{k}}$在[k,+∞)上为增函数,则称f(x)为“k次比增函数”,其中(k∈N*).已知f(x)=eax其中e为自然对数的底数.
(1)若f(x)是“1次比增函数”,求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,求函数g(x)=$\frac{f(x)}{x}$在[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三个共面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$两两所成角相等,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=3,则|$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|=(  )
A.5B.$\sqrt{3}$C.5或6D.6或$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则函数g(x)=kx2+2x-3的递减区间是(  )
A.(1,+∞)B.(-1,+∞)C.(-∞,1)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简求值:
(1)$\frac{1}{2}lg25+lg2+2lg\sqrt{10}+lg{(0.01)^{-1}}$;
(2)$\sqrt{6\frac{1}{4}}$+$\root{3}{{3\frac{3}{8}}}$+${0.0625^{-\frac{1}{2}}}$×$(-\frac{1}{2}{)^{-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义:数列{an}对一切正整数n均满足$\frac{{{a_n}+{a_{n+2}}}}{2}$>an+1,称数列{an}为“凸数列”,以下关于“凸数列”的说法:
①等差数列{an}一定是凸数列;
②首项a1>0,公比q>0且q≠1的等比数列{an}一定是凸数列;
③若数列{an}为凸数列,则数列{an+1-an}是单调递增数列;
④若数列{an}为凸数列,则下标成等差数列的项构成的子数列也为凸数列.
其中正确说法的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{{\sqrt{10+9x-{x^2}}}}{lg(x-1)}$,则函数g(x)=$\frac{{f({2x})}}{x-1}$的定义域为(  )
A.(1,10]B.$(\frac{1}{2},1)∪(1,5]$C.$(\frac{1}{2},5]$D.(1,2)∪(2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的奇函数f(x),当x<0时,f(x)=x2-3x-1,那么x>0时,f(x)=(  )
A.x2-3x-1B.x2+3x-1C.-x2+3x+1D.-x2-3x+1

查看答案和解析>>

同步练习册答案