4£®¶¨Ò壺ÊýÁÐ{an}¶ÔÒ»ÇÐÕýÕûÊýn¾ùÂú×ã$\frac{{{a_n}+{a_{n+2}}}}{2}$£¾an+1£¬³ÆÊýÁÐ{an}Ϊ¡°Í¹ÊýÁС±£¬ÒÔϹØÓÚ¡°Í¹ÊýÁС±µÄ˵·¨£º
¢ÙµÈ²îÊýÁÐ{an}Ò»¶¨ÊÇ͹ÊýÁУ»
¢ÚÊ×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}Ò»¶¨ÊÇ͹ÊýÁУ»
¢ÛÈôÊýÁÐ{an}Ϊ͹ÊýÁУ¬ÔòÊýÁÐ{an+1-an}Êǵ¥µ÷µÝÔöÊýÁУ»
¢ÜÈôÊýÁÐ{an}Ϊ͹ÊýÁУ¬Ôòϱê³ÉµÈ²îÊýÁеÄÏî¹¹³ÉµÄ×ÓÊýÁÐҲΪ͹ÊýÁУ®
ÆäÖÐÕýȷ˵·¨µÄÐòºÅÊǢڢۢܣ®

·ÖÎö ¸ù¾ÝÊýÁÐ{an}Ϊ¡°Í¹ÊýÁС±µÄ¶¨Ò壬ÖðÒ»·ÖÎöËĸö½áÂÛµÄÕæ¼Ù£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£ºµÈ²îÊýÁÐ{an}Âú×ã$\frac{{{a_n}+{a_{n+2}}}}{2}$=an+1£¬¹Ê²»ÊÇ͹ÊýÁУ¬¹Ê¢Ù´íÎó£»
¢ÚÊ×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}£¬Âú×ã$\frac{{a}_{n}+{a}_{n+2}}{2}$£¾$\sqrt{{a}_{n}•{a}_{n+2}}$=an+1£¬Ò»¶¨ÊÇ͹ÊýÁУ¬¹Ê¢ÚÕýÈ·£»
¢ÛÈôÊýÁÐ{an}Ϊ͹ÊýÁУ¬Ôò$\frac{{{a_n}+{a_{n+2}}}}{2}$£¾an+1£¬
Ôòan+an+2£¾2an+1£¬
Ôòan+2-an+1£¾an+1-an£¬
¼´ÊýÁÐ{an+1-an}Êǵ¥µ÷µÝÔöÊýÁУ¬¹Ê¢ÛÕýÈ·£»
¢ÜÈôÊýÁÐ{an}Ϊ͹ÊýÁУ¬Ôòϱê³ÉµÈ²îÊýÁеÄÏî¹¹³ÉµÄ×ÓÊýÁÐҲΪ͹ÊýÁУ¬¹Ê¢ÜÕýÈ·£»£®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁËиÅÄ͹ÊýÁС±£¬ÄѶȲ»´ó£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¸´ÊýzµÄ¹²éÊýÓÐ$\overline z$£¬ÇÒÂú×ã$\overline z$£¨2+3i£©=£¨2-i£©2£¬ÆäÖÐiÊÇÐéÊýµ¥Î»£¬Ôò¸´ÊýzµÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®$-\frac{6}{13}$B£®$\frac{6}{13}$C£®$-\frac{17}{13}$D£®$\frac{17}{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¶Û½Ç¡÷ABCµÄÃæ»ýÊÇ$\frac{\sqrt{3}}{4}$£¬AB=1£¬BC=$\sqrt{3}$£¬ÔòAC=£¨¡¡¡¡£©
A£®1B£®$\sqrt{7}$C£®$\sqrt{7}$»ò1D£®2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýy=f£¨x£©Âú×ãÒÔÏÂÈý¸öÌõ¼þ£º¢Ù¶ÔÓÚÈÎÒâµÄx¡ÊR£¬¶¼ÓÐf£¨x+1£©=$\frac{1}{f£¨x£©}$£»¢Úº¯Êýy=f£¨x+1£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£»¢Û¶ÔÓÚÈÎÒâµÄx1£¬x2¡Ê[0£¬1]£¬ÇÒx1£¼x2£¬¶¼ÓÐf£¨x1£©£¾f£¨x2£©£¬Ôò$f£¨\frac{3}{2}£©$£¬f£¨2£©£¬f£¨3£©´ÓСµ½´óµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®$f£¨\frac{3}{2}£©£¼f£¨2£©£¼f£¨3£©$B£®$f£¨3£©£¼f£¨2£©£¼f£¨\frac{3}{2}£©$C£®$f£¨3£©£¼f£¨\frac{3}{2}£©£¼f£¨2£©$D£®$f£¨\frac{3}{2}£©£¼f£¨3£©£¼f£¨2£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©Âú×ã$f£¨x£©=\sqrt{\frac{kx-1}{x-1}}$£¬£¨k£¾0£©£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄ¶¨ÒåÓò£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[10£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªiΪÐéÊýµ¥Î»£¬Ôò¸´Êý$\frac{i}{2-i}$µÄÄ£µÈÓÚ$\frac{\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®sin2230¡ã+sin110¡ã•cos80¡ã=$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®µÈ²îÊýÁÐ{an}ÖУ¬a2+a5+a8=4£¬a4+a7+a10=28£¬ÔòÊýÁÐ{an}µÄ¹«²îd=£¨¡¡¡¡£©
A£®24B£®12C£®8D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪ʵÊýmºÍ2nµÄµÈ²îÖÐÏîÊÇ4£¬ÊµÊý2mºÍnµÄµÈ²îÖÐÏîÊÇ5£¬ÔòmºÍnµÄµÈ²îÖÐÏîÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®6D£®9

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸