精英家教网 > 高中数学 > 题目详情
19.已知一扇形的半径为5,弧长为2π,则该扇形的圆心角大小为$\frac{2π}{5}$.

分析 设扇形的圆心角为α,运用扇形的弧长公式l=αr,计算即可得到所求值.

解答 解:扇形的半径为5,弧长为2π,
设扇形的圆心角为α,
可得2π=5α,
解得α=$\frac{2π}{5}$.
故答案为:$\frac{2π}{5}$.

点评 本题考查扇形的弧长公式的运用,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设f(x)=|x-1|+|x+1|.
(1)求f(x)≤2x的解集;
(2)若不等式f(x)≥$\frac{{|{2a+1}|-|{a-1}|}}{|a|}$对任意实数a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示为函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<π)的部分图象,则(  )
A.ω=$\frac{13}{5}$,φ=$\frac{5π}{6}$B.ω=$\frac{11}{5}$,φ=$\frac{π}{6}$C.ω=$\frac{7}{5}$,φ=$\frac{5π}{6}$D.ω=$\frac{23}{5}$,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在[-2,2]上的奇函数f(x)为减函数,若f(1-2a)+f(a+1)<0,则实数a的取值范围是[-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=3${\;}^{\frac{4}{3}}$,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{1}{3}$,那么(  )
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的方程为$\sqrt{3}$x$+y-3\sqrt{3}$=0,以O为极点,x轴的正半轴为极轴,建立极坐标系
(Ⅰ)求圆C和直线l的极坐标方程
(Ⅱ)若射线OM:θ=$\frac{π}{3}$与圆C交于点O,P,与直线l交于点Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,圆 C以点C(2,$\frac{π}{3}$)为圆心,2为半径.在以极点为原点,以极轴为x轴正半轴且单位长度一样的直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(2,$\sqrt{3}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解方程(5x+3)3+x3+6x+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z满足$\frac{z+i}{1-i}$=2+i,则z=(  )
A.3+2iB.2-3iC.3-2iD.2+3i

查看答案和解析>>

同步练习册答案