精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x3-ax2+4,若f(x)的图象与x轴正半轴有两个不同的交点,则实数a的取值范围为(  )
A.(1,+∞)B.($\frac{3}{2}$,+∞)C.(2,+∞)D.(3,+∞)

分析 利用参数分离法,进行转化,构造函数,求函数的导数,研究函数的极值即可得到结论.

解答 解:由题意可知f(x)=x3-ax2+4=0,即a=x+$\frac{4}{{x}^{2}}$有两个不等的正根,
设h(x)=x+$\frac{4}{{x}^{2}}$,x>0,
则h′(x)=1-$\frac{8}{{x}^{3}}$=$\frac{{x}^{3}-8}{{x}^{3}}$,
令h′(x)=0,得x=2,
由h′(x)>0得x>2,此时函数单调递增,
由h′(x)<0得,0<x<2,此时函数单调递减,
即在x=2处取得极小值h(2)=2+$\frac{4}{{2}^{2}}$=2+1=3,
结合h(x)的图象可得a>3,
故选D

点评 本题主要考查函数与方程的应用,利用参数分离法,构造函数,研究函数的极值,结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别是a,b,c,已知C为锐角且$\sqrt{15}$asinA=bsinBsinC,b=2a.
(1)求tanC的值;
(2)若a+c=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为(  )
A.$\frac{5}{4}$钱B.$\frac{4}{3}$钱C.$\frac{3}{2}$钱D.$\frac{5}{3}$钱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的焦点坐标是F1(-1,0)、F2(1,0),过点F2垂直于长轴的直线l交椭圆C于B、D两点,且|BD|=3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点P(0,2)且斜率为k的直线l与椭圆C相交于不同两点M,N,试判断:在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b∈R,则“a>0,b>0”是“a2+b2≥2ab”的(  )
A.既不充分也不要条件B.充分不必要条件
C.必要不充分条件D.充分必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,使电路接通,开关不同的开闭方式共有(  )
A.11B.12C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)=sin2x+\sqrt{3}cos2x$的最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|-2<x<3},B={x|log2x>1},则A∩(∁RB)=(  )
A.(-2,2]B.(-2,1]C.(0,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知F1、F2是椭圆C:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的两个焦点,P为椭圆C上的一点,且∠F1PF2=30°,则△PF1F2的面积为8-4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案