精英家教网 > 高中数学 > 题目详情
1.函数$f(x)=sin2x+\sqrt{3}cos2x$的最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

分析 由已知利用两角和的正弦函数公式化简函数解析式可得f(x)=2sin(2x+$\frac{π}{3}$),利用三角函数的周期公式即可求值得解.

解答 解:∵$f(x)=sin2x+\sqrt{3}cos2x$=2sin(2x+$\frac{π}{3}$),
∴最小正周期T=$\frac{2π}{2}$=π.
故选:C.

点评 本题主要考查了两角和的正弦函数公式,三角函数的周期公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.△ABC的内角A,B,C的对边分别为a,b,c,A=30°,cosB=$\frac{4}{5}$,b=2,则a=.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C对应的边长分别为a,b,c,且满足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x3-ax2+4,若f(x)的图象与x轴正半轴有两个不同的交点,则实数a的取值范围为(  )
A.(1,+∞)B.($\frac{3}{2}$,+∞)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某高校进行自主招生测试,对20名已经选拔入围的学生进行语言能力和逻辑思维能力的测试,其测试结果对应人数如下表:
逻辑思维能力
语言表达能力
一般良好优秀
一般22m
良好441
优秀1m2
例如表中语言表达能力良好且逻辑思维能力一般的学生是4人,由于部分数据丢失,只知道从这20名参加测试的学生中随机选取1名,选到语言表达能力一般的学生的概率为$\frac{1}{4}$.
(Ⅰ)求m,n的值;
(Ⅱ)从语言表达能力为优秀的学生中随机选取2名,求其中至少有1名逻辑思维能力优秀的学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{c}$|=2,则向量$\overrightarrow{a}$在向量$\overrightarrow{c}$方向上的投影为$\frac{3}{2}$,$\overrightarrow{a}$•$\overrightarrow{b}$的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.
(1)求C;
(2)若△ABC的面积为2$\sqrt{3}$,a+b=6,求∠ACB的角平分线CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=2sinxcosx-2\sqrt{3}{cos^2}x+\sqrt{3}$的图象为
①图象C关于直线$x=\frac{11π}{12}$对称;
②函数f(x)在区间$(-\frac{π}{12},\frac{5π}{12})$内是增函数;
③由y=2sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C;
以上三个论断中,正确论断的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程3x2+y2=3x-2y的非负整数解(x,y)的组数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案