精英家教网 > 高中数学 > 题目详情
13.参数方程$\left\{{\begin{array}{l}{x={{cos}^2}θ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ为参数)表示的曲线是(  )
A.直线B.C.线段D.射线

分析 将参数方程化为普通方程,即可得出结论.

解答 解:由题意,x+y=1且0≤x≤1,
∴参数方程$\left\{{\begin{array}{l}{x={{cos}^2}θ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ为参数)表示的曲线是线段.
故选:C.

点评 本题考查曲线与方程,考查学生的计算能力,将参数方程化为普通方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知y=f(x)为R上的连续可导的奇函数,当x>0时f′(x)+$\frac{f(x)}{x}$<0,则g(x)=f(x)+$\frac{2}{x}$的零点个数为(  )
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正方形ABCD的边长为2,边AB,CD分别为圆柱上下底面的直径,若一蚂蚁从点A沿圆柱的表面爬到点C,则该蚂蚁所走的最短路程为$\sqrt{{π^2}+4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正三角形ABC的边长为1,设$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{BC}$=$\vec b$,$\overrightarrow{AC}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec b$•$\vec c$+$\vec c$•$\vec a$的值是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足:an=n•3n(n∈N*),则此数列前n项和为Sn=$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}满足an=$\frac{{a}_{n-1}-1}{{a}_{n-1}}$(n>1)且a1=-$\frac{1}{4}$,则a2015=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)在定义域(0,+∞)上是单调函数,若对任意x∈(0,+∞),都有f[f(x)-$\frac{1}{x}$]=2,则f($\frac{1}{6}$)的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)化简  $\frac{sin3α}{sinα}$-$\frac{cos3α}{cosα}$;
(2)已知tan$\frac{α}{2}$=2,求$\frac{6sinα+cosα}{3sinα-2cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校为调查来自南方和北方的同龄大学生的身高差异,从2014级的年龄在17~19岁之间的大学生中随机抽取了自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm)
南方:158,170,166,169,180,175,171,176,162,163
北方:183,173,169,163,179,171,157,175,178,166
(1)根据抽测结果,完成茎叶图,并根据你填写的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论;
(2)设抽测的10名南方大学生的平均身高为$\overline{x}$,将10名同学的身高依次输入按程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义.

查看答案和解析>>

同步练习册答案