17£®Ä³¹«Ë¾ÎªÈ·¶¨ÏÂÒ»Äê¶ÈͶÈëijÖÖ²úÆ·µÄÐû´«·Ñ£¬ÐèÁ˽âÄêÐû´«·Ñx£¨µ¥Î»£ºÍòÔª£©¶ÔÄêÏúÊÛÁ¿y£¨µ¥Î»£º¶Ö£©µÄÓ°Ï죬Ϊ´Ë¶Ô½ü6ÄêµÄÄêÐû´«·Ñx£¨µ¥Î»£ºÍòÔª£©ºÍÄêÏúÊÛÁ¿y£¨µ¥Î»£º¶Ö£©µÄÊý¾Ý½øÐÐÕûÀí£¬µÃÈçÏÂͳ¼Æ±í£º
x£¨ÍòÔª£©234.557.58
y£¨¶Ö£©33.53.5467
£¨¢ñ£©ÓɱíÖÐÊý¾ÝÇóµÃÏßÐԻع鷽³Ì$\hat y=\hat bx+\hat a$ÖеÄ$\hat b¡Ö0.6$£¬ÊÔÇó³ö$\hat a$µÄÖµ£»
£¨¢ò£©ÒÑÖªÕâÖÖ²úÆ·µÄÄêÀûÈóz£¨µ¥Î»£ºÍòÔª£©Óëx¡¢yÖ®¼äµÄ¹ØÏµÎªz=30y-x2£¬¸ù¾Ý£¨¢ñ£©ÖÐËùÇóµÄ»Ø¹é·½³Ì£¬ÇóÄêÐû´«·ÑxΪºÎֵʱ£¬ÄêÀûÈózµÄÔ¤¹ÀÖµ×î´ó£¿

·ÖÎö £¨1£©Çó³ö$\overline{x}£¬\overline{y}$´úÈë»Ø¹é·½³ÌµÃ³ö£»
£¨2£©°Ñ»Ø¹é·½³Ì´úÈëÀûÈó¹«Ê½µÃµ½z¹ØÓÚxµÄ¶þ´Îº¯Êý£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖʵóö´ð°¸£®

½â´ð ½â£º£¨¢ñ£©$\overline{x}=\frac{2+3+4.5+5+7.5+8}{6}=5$£¬$\overline{y}=\frac{3+3.5+3.5+4+6+7}{6}=4.5$£¬
¡à$4.5=0.6¡Á5+\hat a$£¬½âµÃ$\hat a=1.5$£®
£¨¢ò£©ÓÉ£¨¢ñ£©µÃ$\hat y=0.6x+1.5$£¬
¡à$z=30\hat y-{x^2}=-{x^2}+18x+45$=-£¨x-9£©2+126£®
¡àµ±x=9ʱ£¬zÈ¡µÃ×î´óÖµ£¬
ËùÒÔÄêÐû´«·ÑΪ9ÍòԪʱ£¬ÄêÀûÈóµÄÔ¤¹ÀÖµ×î´ó£®

µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÌØµã£¬¶þ´Îº¯ÊýµÄ×îÖµ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$£¨tΪ²ÎÊý£©£¨p£¾0£©£¬Ö±Ïßl¾­¹ýÇúÏßCÍâÒ»µãA£¨-2£¬-4£©ÇÒÇãб½ÇΪ$\frac{¦Ð}{4}$£®
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄ²ÎÊý·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC·Ö±ð½»ÓÚM1£¬M2£¬Èô|AM1|£¬|M1M2|£¬|AM2|³ÉµÈ±ÈÊýÁУ¬ÇópµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a2•a6=3a4£¬a1=1£®ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬b1=a1£¬b7=a4£¬Ôòb4=£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑ֪бÂÊΪ1µÄÖ±Ïßl¾­¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãF£¬ÇÒÓëÅ×ÎïÏßÏཻÓÚA£¬BÁ½µã£¬|AB|=4£®
£¨I£©ÇópµÄÖµ£»
£¨II£©Èô¾­¹ýµãD£¨-2£¬-1£©£¬Ð±ÂÊΪkµÄÖ±ÏßmÓëÅ×ÎïÏßÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨2-x£©£¬ÇÒx¡Ê[-1£¬1]ʱ£¬f£¨x£©=1-x2£¬º¯Êýg£¨x£©ÎªÅ¼º¯Êý£¬ÇÒx£¾0ʱ£¬$g£¨x£©=\frac{1}{x}$£¬Ôòº¯Êýf£¨x£©£¨x¡Ê[-1£¬3]£©µÄͼÏóÓ뺯Êýg£¨x-1£©µÄͼÏóµÄËùÓн»µãµÄºá×ø±êÖ®ºÍµÈÓÚ£¨¡¡¡¡£©
A£®0B£®2C£®4D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨Ò壺ÉèA£¬BÊǷǿյÄÊý¼¯£¬a¡ÊA£¬b¡ÊB£¬ÈôaÊÇbµÄº¯ÊýÇÒbÒ²ÊÇaµÄº¯Êý£¬Ôò³ÆaÓëbÊÇ¡°ºÍг¹ØÏµ¡±£®ÈçµÈʽb=a2£¬a¡Ê[0£¬+¡Þ£©ÖÐaÓëbÊÇ¡°ºÍг¹ØÏµ¡±£¬ÔòÏÂÁеÈÖÐaÓëbÊÇ¡°ºÍг¹ØÏµ¡±µÄÊÇ£¨¡¡¡¡£©
A£®$b=\frac{sina}{a}£¬a¡Ê£¨0£¬\frac{¦Ð}{2}£©$B£®$b={a^3}+\frac{5}{2}{a^2}+2a+1£¬a¡Ê£¨-2£¬-\frac{2}{3}£©$
C£®£¨a-2£©2+b2=1£¬a¡Ê[1£¬2]D£®|a|+|b|=1£¬a¡Ê[-1£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Éèx£¬y¡ÊR£¬Ôò¡°x£¾y£¾0¡±ÊÇ¡°$\frac{x}{y}$£¾1¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ë«ÇúÏߵIJÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{a}{cos¦Õ}}\\{y=btan¦Õ}\end{array}\right.$ÖУ¬²ÎÊýµÄ¼¸ºÎÒâÒåÊÇʲô£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¼¯ºÏA={x|1¡Üx£¼4}£¬B={x|x-a£¼0}£®
£¨1£©µ±a=3ʱ£¬ÇóA¡ÉB£¬A¡ÈB£»
£¨2£©ÈôA⊆B£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸