精英家教网 > 高中数学 > 题目详情
5.已知A=[1,+∞),$B=\left\{{x∈R|\frac{1}{2}≤x≤2a-1}\right\}$,若A∩B≠∅,则实数a的取值范围是(  )
A.[1,+∞)B.$[{\frac{1}{2},1}]$C.$[{\frac{2}{3},+∞})$D.(1,+∞)

分析 根据A与B的交集不为空集,求出a的范围即可.

解答 解:A=[1,+∞),$B=\left\{{x∈R|\frac{1}{2}≤x≤2a-1}\right\}$,且A∩B≠∅,
∴2a-1≥1,
∴a≥1,
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在如图所示的空间几何体中,边长为2的正三角形ABC所在平面与正三角形ABE所在平面互相垂直,DE在平面ABE内的射影为∠AEB的平分线且DE与平面AEB所成的角为60°,DE=2.
(Ⅰ)求证:CD⊥平面ABC;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)+3f(-x)=log2(x+3),则f(1)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:
有明显拖延症无明显拖延症合计
352560
301040
总计6535100
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X,试求随机变量X的分布列和数学期望;
(2)若在犯错误的概率不超过P的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由
附:独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d 
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正项等差数列{an}的前n项和为Sn,S10=40,则a3•a8的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在${({x-\frac{1}{x}-1})^4}$的展开式中,常数项为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.清代著名数学家梅彀成在他的《增删算法统宗》中有这样一歌谣:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”其译文为:“远远望见7层高的古塔,每层塔点着的灯数,下层比上层成倍地增加,一共有381盏,请问塔尖几盏灯?”则按此塔各层灯盏的设置规律,从上往下数第4层的灯盏数应为(  )
A.3B.12C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题时百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.
(1)求出频率分布直方图中的a值,并求出这200的平均年龄;
(2)现在要从年龄较小的第1,2,3组用分层抽样的方法抽取12人,再从这12人中随机抽取3人赠送礼品,求抽取的3人中至少有1人的年龄在第3组的概率;
(3)若要从所有参与调查的人(人数很多)中随机选出3人,记关注民生问题的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为${S_n}=5{n^2}+10n$,(其中n∈N*),则a3=35.

查看答案和解析>>

同步练习册答案