分析 (I)利用等差数列与等比数列的通项公式即可得出.
(II)an•bn=(2n-1)•2n-1.利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(I)设等差数列{an}的公差为d,等比数列{bn}的公比q>0,∵a1=b1=1,a3+b2=7,S2+b2=6,
∴a3-(1+a2)=1,∴d=2,∴an=1+2(n-1)=2n-1.b2=7-a3=7-5=2.∴q=2,bn=2n-1.
(II)an•bn=(2n-1)•2n-1.
∴数列{an•bn}的前n项和Sn=1+3×2+5×22+…+(2n-1)×2n-1,
2Sn=2+3×22+…+(2n-3)×2n-1+(2n-1)×2n,
∴-Sn=1+2×(2+22+…+2n-1)-(2n-1)×2n=1+2×$\frac{2({2}^{n-1}-1)}{2-1}$-(2n-1)×2n=(3-2n)×2n-3,
∴Sn=(2n-3)×2n+3.
点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\overline{x}$+a,s | B. | a$\overline{x}$,s2 | C. | a2$\overline{x}$,s2+a | D. | $\overline{x}$+a2,s+a2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com