精英家教网 > 高中数学 > 题目详情
已知函数y=sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=1的两个不同交点的横坐标为x1,x2,若|x1-x2|=kπ,k∈N*,则ω×θ的值为
 
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:由题意函数y=sin(ωx+θ)(ω>0,0<θ<π)为偶函数,求出θ,通过|x1-x2|的最小值为π求出函数的周期,然后求出ω即可.
解答: 解:函数y=sin(ωx+θ)(ω>0,0<θ<π)为偶函数,所以θ=
π
2

因为函数图象与直线y=1的交点的横坐标为x1,x2
若|x1-x2|=kπ,k∈N*
则|x1-x2|的最小值为π,
所以函数的周期为:π,
所以
ω
=π,所以ω=2,
∴ω×θ=2×
π
2

故答案为:π.
点评:本题是基础题,考查三角函数的解析式的求法,注意三角函数的图象与性质的应用是解题的关键,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=2cos2x+
3
sin2x,x∈R,则下列结论正确的是(  )
A、f(x)的图象关于直线x=
π
3
对称
B、f(x)的最大值是2
C、f(x)在[0,
π
2
]上为增函数
D、f(x)的图象关于点(
12
,1)中心对称

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD
=2,点M在线段PC上,且
PM
MC
(0≤λ≤1),N为AD的中点
(1)求证:BC⊥平面PNB
(2)若平面PAD⊥平面ABCD,且二面角M-BN-D为60°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵A有特征值λ1=1,λ2=2,其对应的一个特征向量分别为e1=
1
1
,e2=
1
0

(Ⅰ)求矩阵A;
(Ⅱ)求圆C:x2+y2=1在矩阵A所对应的线性变换作用下得到曲线C'的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=
-
1
4
x2,0≤x≤2
-(
1
2
)x-
3
4
,x>2
,若关于x的方程[f(x)]2+af(x)+
7a
16
=0,a∈R有且仅有8个不同实数根,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,-1),
b
=(1,2),向量
c
满足(
c
+
b
)⊥
a
,(
c
-
a
)∥
b
,则
c
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2
-b2+4b-3
•x,g(x)=x2(2a2-x2)(a∈N+,b∈Z),若存在x0,使f(x0)为f(x)的最小值,使g(x0)为g(x)的最大值,则此时数对(a,b)为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个容器为0.3L的水壶里灌满一壶水,水的温度为t1=3℃,由于散热壶内温度每min下降t=0.2℃,为了保持壶内温度不变,可从水龙头给它连续不断地滴入温度为t2=45℃的热水,假设每滴热水的质量m=0.2g.问:每min应滴入多少滴热水才能维持壶内水温不变.(假设壶内热传递极快,热水滴入后水温很快达到一致,多余的水从壶嘴溢出,不计水壶的吸热.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
均为非零向量,则下面结论:
a
=
b
a
c
=
b
c
;       
a
c
=
b
c
a
=
b

a
•(
b
+
c
)=
a
b
+
a
c
;     
a
b
c
)=(
a
b
)•
c

正确的是
 

查看答案和解析>>

同步练习册答案