精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.
(Ⅰ)求a、b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最大值和最小值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(Ⅰ)先对函数f(x)求导,根据f′(2)=0,f(2)=c-16,即可求得a,b值;
(Ⅱ)由(Ⅰ)求出f(x)的极大值,由极大值为28,可求出c值,然后求出f(-3),f(3),及函数在区间[-3,3]上的极值,即可求f(x)在[-3,3]上的最大值和最小值.
解答: 解:(Ⅰ)由题f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c-16
12a+b=0
8a+2b+c=c-16

解得a=1,b=-12
(II)由(I)知f(x)=x3-12x+c,f′(x)=3x2-12=3(x+2)(x-2)
令f′(x)=3x2-12=3(x+2)(x-2)=0,解得x1=-2,x2=2
当x∈(-∞,-2)时,f′(x)>0,故f(x)在∈(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数;
由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,f(x)在x2=2处取得极小值f(2)=c-16,
由题设条件知16+c=28得,c=12
此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4
因此f(x)在[-3,3]上的最小值f(2)=-4,最大值为28.
点评:本题主要考查函数的导数与函数的极值、最值之间的关系,属于导数应用问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m、n是两条不同的直线,α、β是两个不同的平面,若已知m⊥n,m⊥α,则“n⊥β”是“α⊥β”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

定义A-B={x|x∈A且x∉B},若A={2,4,6,8,10},B={1,4,8},则A-B=(  )
A、{4,8}
B、{1,2,6,10}
C、{1}
D、{2,6,10}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c成等差数列,求证:a2-bc,b2-ac,c2-ab是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<ax+1≤5},集合B={x|-
1
2
<x≤2},若B?A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价一元,其销售量就减少10个,为得到最大利润,销售价应定为多少元?最大利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的方程:ax2+2(a+1)x+a+1=0,a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2-(m+2)x+m,若函数图象与x轴的两个交点分别位于x=-1的两侧,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈R|x2+ax+1=0},B={x|x<0},若A是B的真子集,求实数a的取值范围.

查看答案和解析>>

同步练习册答案