精英家教网 > 高中数学 > 题目详情
已知a,b,c成等差数列,求证:a2-bc,b2-ac,c2-ab是等差数列.
考点:等差数列的性质
专题:证明题,等差数列与等比数列
分析:a,b,c成等差数列⇒2b=a+c⇒4b2=(a+c)2,于是易求2(b2-ac)-[(a2-bc)+(c2-ab)]=0,从而可证a2-bc,b2-ac,c2-ab是等差数列.
解答: 证明:∵a,b,c成等差数列,
∴2b=a+c,
∴4b2=(a+c)2
∵2(b2-ac)-[(a2-bc)+(c2-ab)]
=2(b2-ac)-[a2+c2-b(a+c)]
=2(b2-ac)-a2-c2+2b2
=4b2-(a+c)2=0,
∴2(b2-ac)=(a2-bc)+(c2-ab),
∴a2-bc,b2-ac,c2-ab是等差数列.
点评:本题考查等差数列的概念及性质的应用,突出考查等差中项的性质的应用,考查推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,既在(0,+∞)单调递增,又是偶函数的是(  )
A、y=|x|+1
B、y=log2x
C、y=-x2+1
D、y=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的导函数为f′(x),若曲线在点(x0,f(x0))处的切线方程为x+y+1=0,则(  )
A、f′(x0)>0
B、f′(x0)=0
C、f′(x0)<0
D、f′(x0)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sinωx(ω>0)在区间[-
π
3
π
4
]上的最大值是3,则ω的最小值为(  )
A、
2
3
B、
3
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在x克a%的盐水中,加入y克b%的盐水,浓度变为c%,若,则x与y的函数关系式是(  )
A、y=
a-c
b-c
x
B、y=
c-b
c-a
x
C、y=
c-a
b-c
x
D、y=
b-c
c-a
x

查看答案和解析>>

科目:高中数学 来源: 题型:

某初级中学共有学生2000名,各年级男、女生人数如表:
初一年级初二年级初三年级
女生373xy
男生377370z
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.
(Ⅰ)求a、b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|3≤x<7,x∈N},B={1,3,5,7},U={x|0<x≤7,x∈Z},
(1)求A∩B;
(2)求A∪B;
(3)求((∁UA)∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD是矩形,PA=AB=1,BC=2,PA⊥底面ABCD.
(1)求证:平面PDC⊥平面PAD;
(2)在边BC上是否存在一点G,使得PD与平面PAG所成的正弦是
5
5

查看答案和解析>>

同步练习册答案