精英家教网 > 高中数学 > 题目详情
20.化简:$\frac{{x}^{2}+3x+9}{{x}^{3}-27}$+$\frac{6x}{9x-{x}^{2}}$-$\frac{x-1}{6+2x}$.

分析 根据立方差和,平方差公式,化简计算即可.

解答 解:$\frac{{x}^{2}+3x+9}{{x}^{3}-27}$+$\frac{6x}{9x-{x}^{3}}$-$\frac{x-1}{6+2x}$,
=$\frac{{x}^{2}+3x+9}{(x-3)({x}^{2}+3x+9)}$-$\frac{6x}{x(x-3)(x+3)}$-$\frac{x-1}{2(x-3)}$,
=$\frac{1}{x-3}$-$\frac{6}{(x+3)(x-3)}$-$\frac{x-1}{2(x+3)}$,
=$\frac{2x+6-12-{x}^{2}+4x-3}{2(x+3)(x-3)}$,
=-$\frac{{x}^{2}-6x+9}{2(x+3)(x-3)}$,
=-$\frac{(x-3)^{2}}{2(x+3)(x-3)}$,
=$\frac{3-x}{2x+6}$.

点评 本题主要考查了分式的化简,掌握立方差公式是关键,a3-b3=(a-b)(a2+ab+b2),属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-3x+2=0},B={x|mx-1=0},若B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x2+(2-a)x+1=0,x∈R},若A⊆{x|x>0},求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=cos2x(x∈R)的图象沿向量$\overrightarrow{a}$平移后,所得曲线对应的函数在区间[$\frac{π}{3}$,$\frac{2π}{3}$]内单调递增,且在该区间的最大值为1,则向量$\overrightarrow{a}$可能是(  )
A.(-$\frac{π}{6}$,$\frac{1}{2}$)B.($\frac{π}{6}$,$\frac{1}{2}$)C.($\frac{π}{3}$,$\frac{3}{2}$)D.(-$\frac{π}{3}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+ax+1,a∈R,且a≠0   
(1)若f(x)在[-1,1]上不单调,求a的取值范围;    
(2)设y=丨f(x)丨,求y在[0,丨a丨]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算:($\frac{2}{3}$)${\;}^{\frac{1}{3}}$=$\frac{\root{3}{18}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-|x|+3,f(|x|)=a有实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若椭圆的长轴长、短轴长、焦距组成一个等差数列,则该椭圆的离心率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求直线AC与平面CBE所成角正弦值;
(Ⅲ)求面ACD和面BCE所成锐二面角的大小.

查看答案和解析>>

同步练习册答案