精英家教网 > 高中数学 > 题目详情
3.如图,飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达区域安排了三个救援中心(记为A,B,C),B在A的正东方向,相距6km,C在B的北偏东30°的方向上,相距4km,P为航天员着陆点.某一时刻,在A地接到P的求救信号,由于B,C两地比A距P远,因此4s后,B,C两个救援中心才同时接收到这一信号,已知该信号的传播速度为1km/s.求∠BAP的大小.

分析 以AB中点为坐标原点,AB所在直线为x轴建立平面直角坐标系,易判断P在以A,B为焦点的双曲线的左支上,从而可确定双曲线的方程,再与BC的垂直平分线的方程联立,可求P的坐标,从而问题得解.

解答 解:以AB中点为坐标原点,AB所在直线为x轴建立平面直角坐标系,…(2分)
因为|PC|=|PB|,所以P在线段BC的垂直平分线上.
又因为|PB|-|PA|=4,|AB|=6,
所以P在以A,B为焦点的双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}=1$的左支上.…(6分)
又BC的垂直平分线方程为x+$\sqrt{3}$y-7=0…(8分)
联立两方程解得x=-8.
所以P(-8,5$\sqrt{3}$)…(10分)
所以kPA=tan∠PAB=-$\sqrt{3}$,得∠PAB=120°.…(12分)

点评 本题主要考查了解三角形的实际应用.解此类题的要点是建立适当的三角函数模型,利用三角函数的基本公式和定理进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若a<b<0,则下列结论一定正确的是(  )
A.$\frac{a+b}{2}$>$\sqrt{ab}$B.$\frac{1}{|a|}$>$\frac{1}{|b|}$C.ac2<bc2D.(a+$\frac{1}{b}$)2>(b+$\frac{1}{a}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的不等式x2-ax+2<0的解集是(1,2),则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知z为复数,z+2i为实数,且(1-2i)z为纯虚数,其中i是虚数单位.
(1)求复数z;
(2)若复数z满足$|{ω-\overline z}|=1$,求|ω|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,则向量$\overrightarrow{AD}$的坐标为(  )
A.(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.(-$\frac{\sqrt{3}}{2}$,-1,$\frac{\sqrt{3}}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)D.($\frac{\sqrt{3}}{2}$,1,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=cosx•sin({x+\frac{π}{3}})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$,x∈R.
(1)求f(x)的最小正周期和对称轴方程;
(2)求不等式f(x)≥$\frac{1}{4}$中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,周期为π的是(  )
A.y=cos4xB.y=tan2xC.y=sin2xD.$y=sin\frac{x}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题:?x∈R,x>0的否定为(  )
A.?x∈R,x≤0B.?x0∈R,x0>0C.?x0∈R,x0≤0D.?x∈R,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知cosx=a0+a1x+a2x2+…+anxn+….有个同学用以下方法求a0,a1,a2,令x=0,得a0=1;由(cosx)'=-sinx=a1+2a2x+…+nanxn-1+…,令x=0,得a1=0,由(cosx)''=-cosx=2a2+2•3a3x+…+(n-1)nanxn-2+…,令x=0,得a2=-$\frac{1}{2}$,依此类推,我们可得a2n=$\frac{(-1)^{n}}{(2n)!}$.

查看答案和解析>>

同步练习册答案