精英家教网 > 高中数学 > 题目详情
15.下列函数中,周期为π的是(  )
A.y=cos4xB.y=tan2xC.y=sin2xD.$y=sin\frac{x}{2}$

分析 由条件根据y=Asin(ωx+)、y=Acos(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,可得结论.

解答 解:由于函数y=cos4x的周期为$\frac{2π}{4}$=$\frac{π}{2}$,故排除A;由于函数y=tan2x的周期为$\frac{π}{2}$,故排除B;由于函数y=sin2x的周期$\frac{2π}{2}$=π,满足条件;
由于函数y=sin$\frac{x}{2}$的周期为$\frac{2π}{\frac{1}{2}}$=4π,故排除D,
故选:C.

点评 本题主要考查三角函数的周期性及其求法,利用了y=Asin(ωx+)、y=Acos(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线l过抛物线C:x2=4y的焦点且斜率为$\frac{3}{4}$,则直线l与曲线C所围成的封闭图形的面积为(  )
A.$\frac{65}{8}$B.$\frac{33}{8}$C.$\frac{125}{24}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程x2+2(a-1)x+2a+6=0的两根为α,β,且满足0<α<1<β,则a的取值范围是$(-3,-\frac{5}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达区域安排了三个救援中心(记为A,B,C),B在A的正东方向,相距6km,C在B的北偏东30°的方向上,相距4km,P为航天员着陆点.某一时刻,在A地接到P的求救信号,由于B,C两地比A距P远,因此4s后,B,C两个救援中心才同时接收到这一信号,已知该信号的传播速度为1km/s.求∠BAP的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x3-3ax+3a在(0,1)内有极小值,则a的取值范围0<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=-cos($\frac{x}{2}$-$\frac{π}{3}$)的单调递增区间是(  )
A.[2kπ-$\frac{4}{3}$π,2kπ-$\frac{2}{3}$π](k∈Z)B.[4kπ-$\frac{4}{3}$π,4kπ+$\frac{2}{3}$π](k∈Z)
C.[$2kπ+\frac{2}{3}π,2kπ+\frac{8}{3}π$](k∈Z)D.[$4kπ+\frac{2}{3}π,4kπ+\frac{8}{3}π}]$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(1,1),t∈R.,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ.
(Ⅰ)求cosθ;
(Ⅱ)求|$\overrightarrow{a}$+t$\overrightarrow{b}$|的最小值及相应的t值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)在定义域内的一个区间[a,b](a<b)上函数值的取值范围恰好是$[\frac{a}{2},\frac{b}{2}]$,则称区间[a,b](a<b)是函数f(x)的一个减半压缩区间.若函数f(x)=$\sqrt{x-1}$+m存在一个减半压缩区间[a,b]((b>a≥1).
(1)当m=$\frac{1}{2}$时,函数f(x)的减半压缩区间为[1,5];
(2)m的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知复数z=a+i(i是虚数单位)是纯虚数,则|z|=1.

查看答案和解析>>

同步练习册答案