精英家教网 > 高中数学 > 题目详情
12.某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(1)求a并估计这次考试中该学科的众数、平均值;
(2)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组…第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差不小于30分(以分数段为依据,不以具体学生分数为依据,如:[40,50),[70,80)这两组分数之差为30分),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.

分析 (1)根据条形统计图求出a的值,确定出优生率,找出众数,平均值即可;
(2)根据题意得出所有等可能的情况数,找出“最佳组合”数,即可确定出选出的两组为“最佳组合”的概率.

解答 解:(1)根据题意得:a=0.1-(0.005+0.010+0.015×2+0.025)=0.03,
成估计这次考试中该学科的众数75分;
平均数为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71;
(2)所有的组合数:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),
即n=5+4+3+2+1=15,
符合“最佳组合”条件的有:(1,4),(1,5),(1,6),(2,5),(2,6),(3,6),
即m=6,
则P=$\frac{m}{n}$=$\frac{6}{15}$=$\frac{2}{5}$.

点评 此题考查了列举法计算基本事件数及事件发生的概率,众数,平均数,弄清统计图中的数据是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下面中的两个变量,具有相关关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)当m<$\frac{1}{2}$时,把集合B用区间表达;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(2,0),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的余弦值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x}{lnx}$+ax,x>1.
(1)若函数f(x)在$x={e^{\frac{1}{2}}}$处取得极值,求a的值;
(2)若方程(2x-m)lnx+x=0在(1,e]上有两个不等实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱A1B1C1-ABC中,AB=AC=AA1,$BC=\sqrt{2}AB$,点D是BC的中点.
(I)求证:AD⊥平面BCC1B1
(II)求证:A1B∥平面ADC1
(III)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,AB=1米,如图所示.小球从A点出发以5v的速度沿半圆O轨道滚到某点E处后,经弹射器以6v的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F.设∠AOE=θ弧度,小球从A到F所需时间为T.
(1)试将T表示为θ的函数T(θ),并写出定义域;
(2)求时间T最短时cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知多面体ABCDEF中,四边形ABCD为平行四边形,AD⊥平面AEC,且$AC=\sqrt{2}$,AE=EC=1,AD=2EF,EF∥AD.
(Ⅰ)求证:平面FCE⊥平面ADE;
(Ⅱ)若直线AE与平面ACF所成的角的正弦值为$\frac{{\sqrt{3}}}{3}$,求AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在[-2,2]上随机抽取两个实数a,b,则事件“直线x+y=1与圆(x-a)2+(y-b)2=2相交”发生的概率为$\frac{11}{16}$.

查看答案和解析>>

同步练习册答案