分析 (1)利用集合A={x|x2+x=0},集合B={x|f(x)=5},A∩B={0}.求b的值;
(2)分类讨论,利用对称轴与区间的位置关系,求此二次函数f(x)在区间[-2,4]上的最大值.
解答 解:(1)∵A={0,-1},A∩B={0},
∴0∈B,
∴f(0)=b=5
由f(-1)≠5,得a≠-$\frac{1}{2}$;
(2)由(1)可得f(x)=-x2+2ax+5,对称轴为x=a.
①a≤-2,f(x)在[-2,4]上为减函数,
∴x=-2时,f(x)max=-4a+1;
①-2<a<4且a≠-$\frac{1}{2}$,x=a时,f(x)max=a2+5;
③a≥4时,f(x)在[-2,4]上为增函数,
∴x=4时,f(x)max=8a-11,
综上所述,f(x)max=$\left\{\begin{array}{l}{-4a+1,a≤-2}\\{{a}^{2}+5,-2<a<4且a≠-\frac{1}{2}}\\{8a-11,a≥4}\end{array}\right.$.
点评 本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | ∅∈A | B. | {$\sqrt{2}$}⊆A | C. | $\sqrt{3}$∈A | D. | $\sqrt{2}$∉A |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=1 | B. | x=-1 | C. | x=$\frac{1}{2}$ | D. | x=-$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com