精英家教网 > 高中数学 > 题目详情
15.设D,E,F分别为△PQR三边QR,RP,PQ的中点,则$\overrightarrow{EQ}+\overrightarrow{FR}$=(  )
A.$\overrightarrow{QR}$B.$\overrightarrow{PD}$C.$\frac{1}{2}\overrightarrow{QR}$D.$\frac{1}{2}\overrightarrow{PD}$

分析 根据向量的三角形法则表示出$\overrightarrow{EQ}+\overrightarrow{FR}$,整理即可.

解答 解:∵D,E,F分别为△PQR三边QR,RP,PQ的中点,
∴$\overrightarrow{EQ}+\overrightarrow{FR}$
=$\overrightarrow{PQ}$-$\overrightarrow{PE}$+$\overrightarrow{PR}$-$\overrightarrow{PF}$
=$\overrightarrow{PQ}$-$\frac{1}{2}$$\overrightarrow{PR}$+$\overrightarrow{PR}$-$\frac{1}{2}$$\overrightarrow{PQ}$
=$\frac{1}{2}$($\overrightarrow{PQ}$+$\overrightarrow{PR}$)
=$\overrightarrow{PD}$,
故选:B.

点评 本题考查了向量的运算法则,考查线段中点以及平行四边形的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AH⊥BC于H,点H满足$\overrightarrow{BH}$=2$\overrightarrow{HC}$,若|$\overrightarrow{BC}$|=3,则$\overrightarrow{BH}$•$\overrightarrow{BA}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\sqrt{x+3}+{log_2}({9-x})$的定义域是(  )
A.{x|x>9}B.{x|-3<x<9}C.{x|x>-3}D.{x|-3≤x<9}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合U={1,2,…,100},T⊆U.对数列{an}(n∈N*),规定:
①若T=∅,则ST=0;
②若T={n1,n2,…,nk},则ST=a${\;}_{{n}_{1}}$+a${\;}_{{n}_{2}}$+…+a${\;}_{{n}_{k}}$.
例如:当an=2n,T={1,3,5}时,ST=a1+a3+a5=2+6+10=18.
已知等比数列{an}(n∈N*),a1=1,且当T={2,3}时,ST=12,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某校高三年级5个班进行拔河比赛,每两个班都要比赛一场.到现在为止,1班已经比了4场,2班已经比了3场,3班已经比了2场,4班已经比了1场,则5班已经比了2场.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x、y满足约束条件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,则x2+y2的最小值为(  )
A.$\sqrt{2}$B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设an=-3n2+15n-18,则数列{an}中的最大项的值是(  )
A.$\frac{16}{3}$B.$\frac{13}{3}$C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{1}{2}$,若$\overrightarrow{a}$$-\overrightarrow{c}$和$\overrightarrow{b}$-$\overrightarrow{a}$夹角为120°,则|$\overrightarrow{c}$|的最大值为(  )
A.$\sqrt{3}$B.2C.$\frac{2}{3}$$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P(1+cosα,sinα),参数α∈[0,2π),在以O极点,x轴的非负半轴为极轴的极坐标系中,点Q在曲线C:ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$上.
(1)求点P的轨迹方程与曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最小值和最大值.

查看答案和解析>>

同步练习册答案