【题目】在△ABC中,内角A,B,C的对边分别为a,b,c且面积为S,满足S=
bccosA
(1)求cosA的值;
(2)若a+c=10,C=2A,求b的值.
【答案】
(1)解:∵S=
bccosA=
bcsinA,
∴tanA=
,
∴0<A<
,
∴cosA=
= ![]()
(2)解:由正弦定理可知,
=2cosA=
,可得:c=
a,
∵a+c=10,
∴a=4,c=6,
∵cosA=
,可得:sinA=
,
∴sinC=sin2A=
,cosC=cos2A=
,
∴sinB=sin(A+C)=
,
由正弦定理b=
=5
【解析】(1)由已知利用三角形面积公式,同角三角函数基本关系式可求tanA的值,结合范围0<A<
,即可求得cosA的值.(2)由已知及正弦定理可求c=
a,进而可求a,c的值,利用三角形内角和定理,两角和的正弦函数公式求得sinA,sinC,sinB的值,由正弦定理即可求得b的值.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:
;余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,离心率为
.
(1)求椭圆
的方程;
(2)
,
是过点
且互相垂直的两条直线,其中
交圆
于
,
两点,
交椭圆
于另一个点
,求
面积取得最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率等于
.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在实数集上的函数f(x)=x2+ax(a为常数),g(x)=
x3﹣bx+m(b为常数),若函数f(x)在x=1处的切线斜率为3,x=
是g(x)的一个极值点
(1)求a,b的值;
(2)若存在x∈[﹣4,4]使得f(x)≥g(x)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)从6名同学中选4名同学组成一个代表队,参加4×400米接力比赛,问有多少种参赛方案?
(2)从6名同学中选4名同学参加场外啦啦队,问有多少种选法?
(3) 4名同学每人可从跳高、跳远、短跑三个项目中,任选一项参加比赛,问有多少种参赛方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题
对任意实数
,不等式
恒成立;命题
方程
表示焦点在
轴上的双曲线.
(1)若命题
为真命题,求实数
的取值范围;
(2)若命题:“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{
}的前n项和为
,且满足2
=
+m(m∈R).
(Ⅰ)求数列{
}的通项公式;
(Ⅱ)若数列{
}满足
,求数列{
}的前n项和
.
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】
(Ⅰ)法一:由前n项和与数列通项公式的关系可得数列的通项公式为
;
法二:由题意可得
,则
,据此可得数列的通项公式为
.
(Ⅱ)由(Ⅰ)可得
,裂项求和可得
.
(Ⅰ)法一:
由
得
,
当
时,
,即
,
又
,当
时符合上式,所以通项公式为
.
法二:
由
得![]()
从而有
,
所以等比数列公比
,首项
,因此通项公式为
.
(Ⅱ)由(Ⅰ)可得
,
,
.
【点睛】
本题主要考查数列前n项和与通项公式的关系,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.
【题型】解答题
【结束】
18
【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.
(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)若射线θ=
(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com