精英家教网 > 高中数学 > 题目详情
11.下列结论中正确的个数为(  )
①y=ln2,则y′=$\frac{1}{2}$;②y=$\frac{1}{{x}^{2}}$,则y′|x=3=-$\frac{2}{27}$;③y=2x,则y′=2xln2;④y=log2x,则y′=-$\frac{1}{xln2}$.
A.0B.1C.2D.3

分析 根据函数的导数公式求导即可.

解答 解:①y=ln2,则y′=0;②y=$\frac{1}{{x}^{2}}$,则y′|x=3=-$\frac{2}{27}$;③y=2x,则y′=2xln2;④y=log2x,则y′=$\frac{1}{xln2}$.
故②③正确,
故选:C.

点评 本题主要考查函数的导数的计算,要求熟练掌握掌握常见函数的导数公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知顶点为原点,对称轴为坐标轴的抛物线的焦点在直线x-2y-2=0上,则此抛物线的标准方程是(  )
A.y2=8xB.x2=4yC.y2=8x或x2=-4yD.y2=8x或x2=4y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=$\frac{\sqrt{1-{x}^{2}}}{x+3}$-m有零点,则实数m的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知z1=1+ilog2x,z2=$\sqrt{3}$+i,|z1|<|z2|,则实数x的取值范围为(${2}^{-\sqrt{3}}$,${2}^{\sqrt{3}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,B、C是海岸线l上相距50km的两个海边小城,圆O是半径为10km的某海岛小城的环岛路,A为圆O上的物资中转站,其中∠AOC=$\frac{2}{3}$π,OC=25km,且l∥OA,为使中转站A的物资运往B城,计划从A地沿环岛路至某地P,再沿水路PQ至海岸线l上Q,最后沿海岸线QB至B城修建运输线,其中PQ∥OC,Q在线段BC上.
(1)设∠POC=θ,求运输线总长度y关于θ的函数;
(2)求运输线总长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设sin(x+y)sin(x-y)=m,则cos2x-cos2y的值为-m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U={1,2,3,4,5},A={1,5},B={2,4},则B∩(∁UA)=(  )
A.{2,3,4}B.{2}C.{2,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设a>0且a≠1,当x为何值时,不等式a${\;}^{2{x}^{2}+1}$>a${\;}^{{x}^{2}+2}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{x}{3x+1}$,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(1)证明数列{$\frac{1}{{a}_{n}}$}是等差数列,并求数列{an}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,求证${S_n}<\frac{1}{3}$.

查看答案和解析>>

同步练习册答案