精英家教网 > 高中数学 > 题目详情
7.已知sinα-cosα=$\frac{2\sqrt{10}}{10}$,则tanα的值等于3或$\frac{1}{3}$.

分析 两边平方,再弦化切,即可求出tanα的值.

解答 解:∵sinα-cosα=$\frac{2\sqrt{10}}{10}$,
∴1-2sinαcosα=$\frac{2}{5}$,
∴sinαcosα=$\frac{3}{10}$,
∴$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{3}{10}$,
∴3tan2α-10tanα+3=0,
∴tanα=3或$\frac{1}{3}$.
故答案为:3或$\frac{1}{3}$.

点评 本题考查求tanα的值,考查同角三角函数关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-$\frac{3}{2}$x2(x∈R),数列{an}的前n项和为Sn
(1)当a=2时,an+1=f(an),n∈N*,且S2=$\frac{9}{8}$,求a1、a2
(2)当a=1时,数列{bn}满足bn+1=f(bn),0<b1<$\frac{1}{2}$,证明bn<$\frac{1}{n+1}$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=lnx-$\frac{1}{2}$ax2-2x存在递减区间,则实数a的最小整数值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设A、B为椭圆$\frac{{x}^{2}}{4}+{y}^{2}$=1长轴的两端点,P为椭圆上一动点(不同于A、B),作AQ⊥PA,PB⊥BQ,求直线AQ与BQ的交点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图.已知等腰梯形ABCD中,AB∥CD,AD=AB=$\frac{1}{2}$CD,M是的CD的中点.N是AC与BM的交点,将△BCM沿BM向上翻折成△BPM,使平面BPM⊥平面ABMD
(I)求证:AB⊥PN.
(Ⅱ)若E为PA的中点.求证:EN∥平面PDM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足$\frac{3}{{a}_{n+1}}$=$\frac{3}{{a}_{n}}$+1,a1=3
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)设bn=anan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知点A为圆O:x2+y2=9与圆C:(x-5)2+y2=16在第一象限内的交点.过A的直线1被圆O和圆C所截得的弦分别为NA,MA(M,N不重合).若|NA|=|MA|,则直线1的方程是7x-24y+45=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.线段AB是过抛物线x2=2py(p>0)焦点F的弦,M是抛物线的准线与y轴的交点,O是坐标原点,过A,B两点分别作此抛物线的切线,两切线相交于N点.
(I)求证:N点在抛物线的准线上;
(Ⅱ)设直线AB与x轴交于Q点,当$\overrightarrow{MA}$•$\overrightarrow{MB}$=4p2,△ABN的面积的取值范围限定在[5$\sqrt{5}$,45$\sqrt{5}$]时,求动线段QF的轨迹所形成的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{m}$=(asinx,cosx),$\overrightarrow{n}$=(sinx,bxinx),若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,满足f($\frac{π}{6}$)=2,且f(x)的导函数f′(x)的图象关于直线x=$\frac{π}{12}$对称.
(1)求函数f(x)的解析式;
(2)将函数f(x)图象的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数g(x),求方程g(x)-1-$\sqrt{2}$=0在区间[0,π]上的所有根之和.

查看答案和解析>>

同步练习册答案