精英家教网 > 高中数学 > 题目详情
2.如图.已知等腰梯形ABCD中,AB∥CD,AD=AB=$\frac{1}{2}$CD,M是的CD的中点.N是AC与BM的交点,将△BCM沿BM向上翻折成△BPM,使平面BPM⊥平面ABMD
(I)求证:AB⊥PN.
(Ⅱ)若E为PA的中点.求证:EN∥平面PDM.

分析 (1)连结AM,则可证△BCM为等边三角形,从而PN⊥BM,由面面垂直得出PN⊥平面ABMD,故而PN⊥AB;
(2)连结PC,由中位线定理得EN∥PC,故而EN∥平面PDM.

解答 证明:(1)连结AM,
∵M是的CD的中点,AB=$\frac{1}{2}$CD,AB∥CD,
∴四边形ABCM是平行四边形,四边形ABMD是平行四边形,
∴N是BM的中点,BM=AD,又∵AD=BC,
∴△BCM是等边三角形,即△PBM是等边三角形.
∴PN⊥BM,∵平面PBM⊥平面ABMD,平面PBM∩平面ABMD=BM,PN?平面PBM,
∴PN⊥平面ABMD,∵AB?平面ABMD,
∴AB⊥PN.
(2)连结PC,∵E是PA的中点,N是AC的中点,
∴EN∥PC,
∵PC?平面PDM,EN?平面PDM,
∴EN∥平面PDM.

点评 本题考查了线面垂直的判断与性质,线面平行的判定,面面垂直的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2acos2ωx+2sinωxcosωx.(ω>0)
(1)若f(x)的最大值为$\sqrt{2}-1$,求实数a的值.
(2)在条件(1)下,把f(x)图象上的点的横坐标变为原来的3倍,纵坐标不变,可得函数y=$\sqrt{2}$sin($\frac{2}{3}$x-$\frac{π}{4}$)-1的图象,求ω的值;
(3)若$ω=\frac{1}{2}$,图象关于直线x=$\frac{5}{3}$π对称,求函数y=cosx+asinx的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,$\widehat{AB}$为半圆,O为圆心,OA=1,C为$\widehat{AB}$上的动点,D、E为线段AC的三等分点,设∠AOC=α,将△ODE的面积为y=f(α),则y=f(α)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式$\sqrt{|1-x|}$>kx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列1,1,2,1,1,3,1,1,1,4,1,1,1,1,5,…$\underset{\underbrace{1,…1}}{n-1}$,n,…的第2016项为63,前2016项的和为20162

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sinα-cosα=$\frac{2\sqrt{10}}{10}$,则tanα的值等于3或$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若虚数z满足z3=27,则z3+z2+3z+3=21.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知0<m<1,0<n<1,F1、F2是椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1的两个焦点,P是椭圆上一点,则使△PF1F2的面积等于n2的点P恰有4个的概率是$\frac{\sqrt{2}}{2}$或0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.椭圆C的焦点在x轴上,一个顶点坐标是(2,0),过焦点且垂直于长轴的弦长为1,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{14}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案