分析 把AB 分成AP+PB,设∠BAO=α,用α的正弦、余弦表示AB,把AB看成函数,则函数的导数等于0时,AB取最小值,求出α的值,即得AB取最小值.
解答 解:设∠BAO=α,则y=|AB|=|AP|+|PB|=$\frac{1}{cosα}$+$\frac{3\sqrt{3}}{sinα}$,
y′=$\frac{-3\sqrt{3}cosα}{si{n}^{2}α}$+$\frac{sinα}{co{s}^{2}α}$,
当y′=0时,|AB|最小.
y′=0,即$\frac{-3\sqrt{3}cosα}{si{n}^{2}α}$+$\frac{sinα}{co{s}^{2}α}$=0,tanα=$\sqrt{3}$,α=60°,
∴|AB|最小为2+6=8,
故答案为:8.
点评 本题考查直线过定点问题,把AB看成函数,利用导数求函数最值.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>c>a | C. | a>c>b | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 10 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3) | B. | (0,4) | C. | $(-1,\frac{7}{2})$ | D. | (-1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com