精英家教网 > 高中数学 > 题目详情
6.如图,在棱长为2的正方体ABCD-A′B′C′D′中,E、F分别是A′B′和AB的中点.求:
(1)异面直线A′F与CE所成的角的大小(结果用反三角函数值表示);
(2)直线A′F与平面ABC′D′所成的角的大小.(结果用反三角函数值表示);
(3)二面角A-CE-F的大小.

分析 (1)以D为原点,DA为x轴,DC为y轴,DD′为z轴,建立空间直角坐标系,利用向量法能求出异面直线A′F与CE所成的角的大小.
(2)求出$\overrightarrow{{A}^{'}F}$和平面ABC′D′的法向量,利用向量法能求出直线A′F与平面ABC′D′所成的角的大小.
(3)求出平面ACE的法向量和平面CEF的法向量,利用向量法能求出二面角A-CE-F的大小.

解答 解:(1)以D为原点,DA为x轴,DC为y轴,DD′为z轴,建立空间直角坐标系,
A′(2,0,2),F(2,1,0),C(0,2,0),E(2,1,2),
$\overrightarrow{{A}^{'}F}$=(0,1,-2),$\overrightarrow{CE}$=(2,-1,2),
设异面直线A′F与CE所成的角为θ,
则cosθ=|cos<$\overrightarrow{{A}^{'}F}$,$\overrightarrow{CE}$>|=$\frac{|\overrightarrow{{A}^{'}F}•\overrightarrow{CE}|}{|\overrightarrow{{A}^{'}F}|•|\overrightarrow{CE}|}$
=$\frac{5}{\sqrt{5}•\sqrt{9}}$=$\frac{\sqrt{5}}{3}$.
∴异面直线A′F与CE所成的角的大小为arccos$\frac{\sqrt{5}}{3}$.
(2)$\overrightarrow{{A}^{'}F}$=(0,1,-2),A(2,0,0),B(2,2,0),D′(0,0,2),
$\overrightarrow{AB}$=(0,2,0),$\overrightarrow{A{D}^{'}}$=(-2,0,2),
设平面ABC′D′的法向量$\overrightarrow{p}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{AB}=2{y}_{1}=0}\\{\overrightarrow{p}•\overrightarrow{A{D}^{'}}=-2{x}_{1}+2{z}_{1}=0}\end{array}\right.$,取x1=1,得$\overrightarrow{p}$=(1,0,1),
设直线A′F与平面ABC′D′所成的角为α,
则sinα=|cos<$\overrightarrow{{A}^{'}F}$,$\overrightarrow{p}$>|=$\frac{|\overrightarrow{{A}^{'}F}•\overrightarrow{p}|}{|\overrightarrow{{A}^{'}F}|•|\overrightarrow{p}|}$=$\frac{2}{\sqrt{5}•\sqrt{2}}$=$\frac{\sqrt{10}}{5}$,
∴直线A′F与平面ABC′D′所成的角的大小为arcsin$\frac{\sqrt{10}}{5}$.
(3)A(2,0,0),C(0,2,0),E(2,1,2),F(2,1,0),
$\overrightarrow{CE}$=(2,-1,2),$\overrightarrow{CA}$=(-2,2,0),$\overrightarrow{CF}$=(2,-1,0),
设平面ACE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=-2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{CE}=2x-y+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-$\frac{1}{2}$),
设平面CEF的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CE}=2a-b+2c=0}\\{\overrightarrow{m}•\overrightarrow{CF}=2a-b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,2,0),
设二面角A-CE-F的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{5}•\sqrt{\frac{9}{4}}}$=$\frac{2\sqrt{5}}{5}$.
∴二面角A-CE-F的大小为arccos$\frac{2\sqrt{5}}{5}$.

点评 本题考查异面直线所成角的大小的求法,考查线面角的大小的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.过点P(1,3$\sqrt{3}$)作直线l交x轴正半轴于点A,交y轴正半轴于点B,则AB长度的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,DE是⊙O的直径,过⊙O上的点C作直线AB,交ED的延长线于点B,且OA=OB,CA=CB,连结EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=$\frac{1}{2}$,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,直线PO与直径为4的圆O交于B,C两点,且PC=2,直线PA切圆O于点A
(Ⅰ)证明:AB=AP;
(Ⅱ)若AM⊥PB,延长MC交AP于点N,求证:MN⊥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=1+sin2θ}\\{y=2sinθ+2cosθ}{\;}\end{array}\right.$(θ为参数),若以该直角坐标系原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线N的极坐标方程为:ρcos(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为参数).
(1)若曲线N与曲线M只有一个公共点,求t的取值;
(2)当t=-4时,求曲线M上的点与曲线N上点的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.正方形ABCD-A1B1C1D1中,二面角B-A1C-A的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}$,(α为参数),α∈[0,π].若以该直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线N的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(其中m为常数)
(Ⅰ)求曲线M与曲线N的普通方程;
(Ⅱ)若曲线M与曲线N有两个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,自圆O外一点P引圆O的切线,切点为A,M为AP的中点,过点M引圆的割线交圆O于B,C两点,且∠BMP=120°,∠BPC=30°,MC=8.
(Ⅰ)求∠MPB的大小;
(Ⅱ)记△MAB和△MCA的面积分别为S△MAB和S△MCA,求$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了判断高中学生对文理科的偏好是否与性别有关,随机调查了50名学生,得到如下2×2列联表:
  偏好理 偏好文 总计
 男 20 25 
 女  13 
 总计   50
(Ⅰ)把列联表中缺失的数据填写完整;
(Ⅱ)根据表中数据判断,是否有97.5%的把握认为“高中学生对文理科的偏好于与性别有关”,并说明理由.
附:K2=$\frac{n({ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$.其中n=a+b+c+d.
 P(K2≥k0 0.150 0.100 0.050 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步练习册答案