18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=sin¦Á\end{array}$£¬£¨¦ÁΪ²ÎÊý£©£¬¦Á¡Ê[0£¬¦Ð]£®ÈôÒÔ¸ÃÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßNµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨ÆäÖÐmΪ³£Êý£©
£¨¢ñ£©ÇóÇúÏßMÓëÇúÏßNµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÈôÇúÏßMÓëÇúÏßNÓÐÁ½¸ö¹«¹²µã£¬ÇómµÄȡֵ·¶Î§£®

·ÖÎö £¨I£©ÓÉÇúÏßMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=sin¦Á\end{array}$£¬£¨¦ÁΪ²ÎÊý£©£¬¦Á¡Ê[0£¬¦Ð]£®ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃÆÕͨ·½³Ì£¬×¢ÒâyµÄȡֵ·¶Î§£®ÇúÏßNµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨ÆäÖÐmΪ³£Êý£©£¬Õ¹¿ª¿ÉµÃ£º$\frac{\sqrt{2}}{2}£¨¦Ñsin¦È+¦Ñcos¦È£©$=$\frac{\sqrt{2}}{2}$m£¬°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈë¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨¢ñI£©ÓÉÖ±ÏßNÓëÔ²MÏàÇÐʱ£¬$\frac{|m|}{\sqrt{2}}$=1£¬È¡m=$\sqrt{2}$£®Ö±Ïß¾­¹ýµã£¨1£¬0£©Ê±£¬m=1£®¼´¿ÉµÃ³ömµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨I£©ÓÉÇúÏßMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=sin¦Á\end{array}$£¬£¨¦ÁΪ²ÎÊý£©£¬¦Á¡Ê[0£¬¦Ð]£®¿ÉµÃx2+y2=1£¨1¡Ýy¡Ý0£©
ÇúÏßNµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨ÆäÖÐmΪ³£Êý£©£¬Õ¹¿ª¿ÉµÃ£º$\frac{\sqrt{2}}{2}£¨¦Ñsin¦È+¦Ñcos¦È£©$=$\frac{\sqrt{2}}{2}$m£¬»¯Îª£ºx+y=m£®
£¨¢ñI£©ÓÉÖ±ÏßNÓëÔ²MÏàÇÐʱ£¬$\frac{|m|}{\sqrt{2}}$=1£¬È¡m=$\sqrt{2}$£®
Ö±Ïß¾­¹ýµã£¨1£¬0£©Ê±£¬m=1£®
¡ßÇúÏßMÓëÇúÏßNÓÐÁ½¸ö¹«¹²µã£¬¡àmµÄȡֵ·¶Î§ÊÇ[1£¬$\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²éÁËÖ±½Ç×ø±êÓë¼«×ø±êµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏàÇÐÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖªÏß¶ÎACΪ¡ÑOµÄÖ±¾¶£¬PAΪ¡ÑOµÄÇÐÏߣ¬ÇеãΪA£¬BΪ¡ÑOÉÏÒ»µã£¬ÇÒBC¡ÎPO£®
£¨I£©ÇóÖ¤£ºPBΪ¡ÑOµÄÇÐÏß
£¨¢ò£©Èô¡ÑOµÄ°ë¾¶Îª1£¬PA=3£¬ÇóBCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ¨T4sin£¨¦È-$\frac{¦Ð}{3}$£©£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵxOy£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãPÔÚÇúÏßCÉÏ£¬µãQµÄÖ±½Ç×ø±êÊÇ£¨cos¦Õ£¬sin¦Õ£©£¬ÆäÖУ¨¦Õ¡ÊR£©£¬Çó|PQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚÀⳤΪ2µÄÕý·½ÌåABCD-A¡äB¡äC¡äD¡äÖУ¬E¡¢F·Ö±ðÊÇA¡äB¡äºÍABµÄÖе㣮Çó£º
£¨1£©ÒìÃæÖ±ÏßA¡äFÓëCEËù³ÉµÄ½ÇµÄ´óС£¨½á¹ûÓ÷´Èý½Çº¯ÊýÖµ±íʾ£©£»
£¨2£©Ö±ÏßA¡äFÓëÆ½ÃæABC¡äD¡äËù³ÉµÄ½ÇµÄ´óС£®£¨½á¹ûÓ÷´Èý½Çº¯ÊýÖµ±íʾ£©£»
£¨3£©¶þÃæ½ÇA-CE-FµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªËÄÀâ×¶P-ABCDÈçͼËùʾ£¬ÆäÖÐÆ½ÃæPAD¡ÍÆ½ÃæABCD£¬PA¡ÍAD£¬PA=AB=BC=AC=4£¬Ïß¶ÎAC±»Ïß¶ÎBDƽ·Ö£®
£¨I£©ÇóÖ¤£ºBD¡ÍÆ½ÃæPAC£»
£¨¢ò£©Èô¡ÏDAC=30¡ã£¬Çó¶þÃæ½ÇA-PC-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ô²ÄÚ½ÓËıßÐÎABCDÖУ¬BDÊÇÔ²µÄÖ±¾¶£¬AB=AC£¬ÑÓ³¤ADÓëBCµÄÑÓ³¤ÏßÏཻÓÚµãE£¬×÷EF¡ÍBDÓÚF£®
£¨1£©Ö¤Ã÷£ºEC=EF£»
£¨2£©Èç¹ûDC=$\frac{1}{2}$BD=3£¬ÊÔÇóDEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¼«×ø±êϵÖУ¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬ÈôÒÔ¼«µãΪԭµã£¬¼«ÖáËùÔÚÖ±ÏßΪxÖὨÁ¢Ö±½Ç×ø±êϵ£¬ÔòC1µÄÖ±½Ç×ø±ê·½³ÌΪy=x+2£¬£»ÇúÏßC2ÔÚÖ±½Ç×ø±êϵÖеIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cost\\ y=2+2sint\end{array}$£¨²ÎÊýt¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}}$]£©£¬ÔòC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+£¨y-2£©2=4£»C1±»C2½ØµÃµÄÏÒ³¤Îª4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÒÑÖª£ºCÊÇÒÔABΪֱ¾¶µÄ°ëÔ²OÉÏÒ»µã£¬CH¡ÍABÓÚµãH£¬Ö±ÏßACÓë¹ýBµãµÄÇÐÏßÏཻÓÚµãD£¬FΪBDÖе㣬Á¬½ÓAF½»CHÓÚµãE£¬
£¨¢ñ£©ÇóÖ¤£ºFCÊÇ¡ÑOµÄÇÐÏߣ»
£¨¢ò£©ÈôFB=FE£¬¡ÑOµÄ°ë¾¶Îª$\sqrt{2}$£¬ÇóFC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®·½³Ì3x+1=2${\;}^{{x}^{2}-1}$µÄ½âΪ1+log23ºÍ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸